Sort elements of the array that occurs in between multiples of K

Given an array arr[] and an integer K. The task is to sort the elements that are in between any two multiples of K.
Examples:
Input: arr[] = {2, 1, 13, 3, 7, 8, 21, 13, 12}, K = 2
Output: 2 1 3 7 13 8 13 21 12
The multiples of 2 in the array are 2, 8 and 12.
The elements that are in between the first two multiples of 2 are 1, 13, 3 and 7.
Hence, these elements in sorted order are 1, 3, 7 and 13.
Similarly, the elements between 8 and 12 in sorted order will be 13 and 21.Input: arr[] = {11, 10, 9, 7, 4, 5, 12, 22, 13, 15, 17, 16}, K = 3
Output: 11 10 9 4 5 7 12 13 22 15 17 16
Approach: Traverse the array and keep track of the multiples of K, starting from the 2nd multiple of K sort every element between the current and the previous multiple of K. Print the updated array at the end.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include<bits/stdc++.h>using namespace std;// Utility function to print// the contents of an arrayvoid printArr(int arr[], int n){ for (int i = 0; i < n; i++) cout << (arr[i]) << " ";}// Function to sort elements// in between multiples of kvoid sortArr(int arr[], int n, int k){ // To store the index of // previous multiple of k int prev = -1; for (int i = 0; i < n; i++) { if (arr[i] % k == 0) { // If it is not the // first multiple of k if (prev != -1) // Sort the elements in between // the previous and the current // multiple of k sort(arr + prev + 1, arr + i); // Update previous to be current prev = i; } } // Print the updated array printArr(arr, n);}// Driver codeint main(){ int arr[] = {2, 1, 13, 3, 7, 8, 21, 13, 12}; int n = sizeof(arr) / sizeof(arr[0]); int k = 2; sortArr(arr, n, k);}// This code is contributed by// Surendra_Gangwar |
Java
// Java implementation of the approachimport java.util.Arrays;class GFG { // Utility function to print // the contents of an array static void printArr(int arr[], int n) { for (int i = 0; i < n; i++) System.out.print(arr[i] + " "); } // Function to sort elements // in between multiples of k static void sortArr(int arr[], int n, int k) { // To store the index of // previous multiple of k int prev = -1; for (int i = 0; i < n; i++) { if (arr[i] % k == 0) { // If it is not the // first multiple of k if (prev != -1) // Sort the elements in between // the previous and the current // multiple of k Arrays.sort(arr, prev + 1, i); // Update previous to be current prev = i; } } // Print the updated array printArr(arr, n); } // Driver code public static void main(String[] args) { int arr[] = { 2, 1, 13, 3, 7, 8, 21, 13, 12 }; int n = arr.length; int k = 2; sortArr(arr, n, k); }} |
Python3
# Python3 implementation of the approach# Utility function to print# the contents of an arraydef printArr(arr, n) : for i in range(n) : print(arr[i], end = " ");# Function to sort elements# in between multiples of kdef sortArr(arr, n, k) : # To store the index of # previous multiple of k prev = -1; for i in range(n) : if (arr[i] % k == 0) : # If it is not the first # multiple of k if (prev != -1) : # Sort the elements in between #the previous and the current # multiple of k temp = arr[prev + 1:i]; temp.sort(); arr = arr[ : prev + 1] + temp + arr[i : ]; # Update previous to be current prev = i; # Print the updated array printArr(arr, n);# Driver codeif __name__ == "__main__" : arr = [ 2, 1, 13, 3, 7, 8, 21, 13, 12 ]; n = len(arr); k = 2; sortArr(arr, n, k);# This code is contributed by Ryuga |
C#
// C# implementation of the approach using System.Collections;using System;class GFG { // Utility function to print // the contents of an array static void printArr(int []arr, int n) { for (int i = 0; i < n; i++) Console.Write(arr[i] + " "); } // Function to sort elements // in between multiples of k static void sortArr(int []arr, int n, int k) { // To store the index of // previous multiple of k int prev = -1; for (int i = 0; i < n; i++) { if (arr[i] % k == 0) { // If it is not the // first multiple of k if (prev != -1) // Sort the elements in between // the previous and the current // multiple of k Array.Sort(arr, prev + 1, i-(prev + 1)); // Update previous to be current prev = i; } } // Print the updated array printArr(arr, n); } // Driver code public static void Main(String []args) { int []arr = { 2, 1, 13, 3, 7, 8, 21, 13, 12 }; int n = arr.Length; int k = 2; sortArr(arr, n, k); } } //contributed by Arnab Kundu |
Javascript
<script>// Javascript implementation of the approach// Utility function to print// the contents of an arrayfunction printArr(arr, n){ for (var i = 0; i < n; i++) document.write(arr[i] + " ");}// Function to sort elements// in between multiples of kfunction sortArr(arr, n, k){ // To store the index of // previous multiple of k var prev = -1; for (var i = 0; i < n; i++) { if (arr[i] % k == 0) { // If it is not the // first multiple of k if (prev != -1) var tmp = arr.slice(prev+1, i).sort((a,b)=> a-b); // Sort the elements in between // the previous and the current // multiple of k for(var j=prev+1; j< i; j++) { arr[j] = tmp[j-prev-1]; } // Update previous to be current prev = i; } } // Print the updated array printArr(arr, n);}// Driver codevar arr = [2, 1, 13, 3, 7, 8, 21, 13, 12];var n = arr.length;var k = 2;sortArr(arr, n, k);</script> |
2 1 3 7 13 8 13 21 12
Time Complexity: O(n2*log(n))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!


