Find the value of ln(N!) using Recursion

Given a number N, the task is to find the log value of the factorial of N i.e. log(N!).
Note: ln means log with base e.
Examples: 
 

Input: N = 2
Output: 0.693147

Input:  N = 3
Output: 1.791759

 

Approach:
Method -1: Calculate n! first, then take its log value.
Method -2: By using the property of log, i.e. take the sum of log values of n, n-1, n-2 …1. 
 

ln(n!) = ln(n*n-1*n-2*…..*2*1) = ln(n)+ln(n-1)+……+ln(2)+ln(1) 
 

Below is the implementation of the Method-2: 
 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the value
double fact(int n)
{
    if (n == 1)
        return 0;
    return fact(n - 1) + log(n);
}
// Driver code
int main()
{
    int N = 3;
    cout << fact(N) << "\n";
    return 0;
}


C




// C implementation of the above approach
#include <math.h>
#include <stdio.h>
 
long double fact(int n)
{
    if (n == 1)
        return 0;
    return fact(n - 1) + log(n);
}
 
// Driver code
int main()
{
    int n = 3;
    printf("%Lf", fact(n));
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
import java.io.*;
class logfact {
    public static double fact(int n)
    {
        if (n == 1)
            return 0;
        return fact(n - 1) + Math.log(n);
    }
 
    public static void main(String[] args)
    {
 
        int N = 3;
        System.out.println(fact(N));
    }
}


Python




# Python implementation of the above approach
import math
def fact(n):
    if (n == 1):
        return 0
    else:
        return fact(n-1) + math.log(n)
N = 3
print(fact(N))


C#




// C# implementation of the above approach
using System;
 
class GFG
{
    public static double fact(int n)
    {
        if (n == 1)
            return 0;
        return fact(n - 1) + Math.Log(n);
    }
 
    // Driver code
    public static void Main()
    {
        int N = 3;
        Console.WriteLine(fact(N));
    }
}
 
// This code is contributed by ihritik


PHP




<?php
 
//PHP implementation of the above approach
 
function fact($n)
{
    if ($n == 1)
        return 0;
    return fact($n - 1) + log($n);
}
 
// Driver code
$n = 3;
echo fact($n);
 
// This code is contributed by ihritik
?>


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to calculate the value
function fact(n)
{
    if (n == 1)
        return 0;
    return fact(n - 1) + Math.log(n);
}
// Driver code
var N = 3;
document.write( fact(N).toFixed(6) + "<br>");
 
</script>


Output: 

1.791759

 

Time Complexity: O(n)

Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button