Find first k natural numbers missing in given array

Given an array of size n and a number k, we need to print first k natural numbers that are not there in the given array.
Examples:
Input : [2 3 4]
k = 3
Output : [1 5 6]
Input : [-2 -3 4]
k = 2
Output : [1 2]
- Sort the given array.
- After sorting, we find the position of the first positive number in the array.
- Now we traverse the array and keep printing elements in gaps between two consecutive array elements.
- If gaps don’t cover k missing numbers, we print numbers greater than the largest array element.
Implementation:
C++
// C++ program to find missing k numbers// in an array.#include <bits/stdc++.h>using namespace std;// Prints first k natural numbers in// arr[0..n-1]void printKMissing(int arr[], int n, int k){ sort(arr, arr + n); // Find first positive number int i = 0; while (i < n && arr[i] <= 0) i++; // Now find missing numbers // between array elements int count = 0, curr = 1; while (count < k && i < n) { if (arr[i] != curr) { cout << curr << " "; count++; } else i++; curr++; } // Find missing numbers after // maximum. while (count < k) { cout << curr << " "; curr++; count++; }}// Driver codeint main(){ int arr[] = { 2, 3, 4 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; printKMissing(arr, n, k); return 0;} |
Java
// Java program to find missing k numbers// in an array.import java.util.Arrays;class GFG { // Prints first k natural numbers in // arr[0..n-1] static void printKMissing(int[] arr, int n, int k) { Arrays.sort(arr); // Find first positive number int i = 0; while (i < n && arr[i] <= 0) i++; // Now find missing numbers // between array elements int count = 0, curr = 1; while (count < k && i < n) { if (arr[i] != curr) { System.out.print(curr + " "); count++; } else i++; curr++; } // Find missing numbers after // maximum. while (count < k) { System.out.print(curr + " "); curr++; count++; } } // Driver code public static void main(String[] args) { int[] arr = { 2, 3, 4 }; int n = arr.length; int k = 3; printKMissing(arr, n, k); }}/* This code is contributed by Mr. Somesh Awasthi */ |
Python3
# Python3 program to find missing # k numbers in an array. # Prints first k natural numbers # in arr[0..n-1] def printKMissing(arr, n, k) : arr.sort() # Find first positive number i = 0 while (i < n and arr[i] <= 0) : i = i + 1 # Now find missing numbers # between array elements count = 0 curr = 1 while (count < k and i < n) : if (arr[i] != curr) : print(str(curr) + " ", end = '') count = count + 1 else: i = i + 1 curr = curr + 1 # Find missing numbers after # maximum. while (count < k) : print(str(curr) + " ", end = '') curr = curr + 1 count = count + 1 # Driver code arr = [ 2, 3, 4 ] n = len(arr) k = 3printKMissing(arr, n, k); # This code is contributed # by Yatin Gupta |
C#
// C# program to find missing // k numbers in an array.using System;class GFG { // Prints first k natural numbers // in arr[0..n-1] static void printKMissing(int[] arr, int n, int k) { Array.Sort(arr); // Find first positive number int i = 0; while (i < n && arr[i] <= 0) i++; // Now find missing numbers // between array elements int count = 0, curr = 1; while (count < k && i < n) { if (arr[i] != curr) { Console.Write(curr + " "); count++; } else i++; curr++; } // Find missing numbers // after maximum. while (count < k) { Console.Write(curr + " "); curr++; count++; } } // Driver code public static void Main() { int[] arr = {2, 3, 4}; int n = arr.Length; int k = 3; printKMissing(arr, n, k); }}// This code is contributed by Nitin Mittal |
PHP
<?php// PHP program to find missing k numbers// in an array.// Prints first k natural numbers in// arr[0..n-1]function printKMissing($arr, $n, $k){ sort($arr); sort($arr , $n); // Find first positive number $i = 0; while ($i < $n && $arr[$i] <= 0) $i++; // Now find missing numbers // between array elements $count = 0; $curr = 1; while ($count < $k && $i < $n) { if ($arr[$i] != $curr) { echo $curr , " "; $count++; } else $i++; $curr++; } // Find missing numbers after // maximum. while ($count < $k) { echo $curr , " "; $curr++; $count++; }} // Driver code $arr =array ( 2, 3, 4 ); $n = sizeof($arr); $k = 3; printKMissing($arr, $n, $k);// This code is contributed by Nitin Mittal.?> |
Javascript
<script>// JavaScript program to find missing k numbers// in an array.// Prints first k natural numbers in// arr[0..n-1]function printKMissing(arr, n, k) { arr.sort((a, b) => a - b); // Find first positive number let i = 0; while (i < n && arr[i] <= 0) i++; // Now find missing numbers // between array elements let count = 0, curr = 1; while (count < k && i < n) { if (arr[i] != curr) { document.write(curr + " "); count++; } else i++; curr++; } // Find missing numbers after // maximum. while (count < k) { document.write(curr, " "); curr++; count++; }}// Driver codelet arr = new Array(2, 3, 4);let n = arr.length;let k = 3;printKMissing(arr, n, k);// This code is contributed by gfgking</script> |
Output
1 5 6
Time Complexity: O(n Log n)
Auxiliary Space: O(1)
Alternative Method:
- We can use hashmap to search in O(1) time.
- Use a dictionary to store values in the array.
- We run a loop from 1 to n+k and check whether they are in hashmap.
- If they are not present print the number.
- if all k elements are found break the loop.
Implementation:
C++
// C++ code for // the above approach#include <bits/stdc++.h>using namespace std;// Program to print first k// missing numbervoid printmissingk(int arr[], int n, int k){ // Creating a hashmap map<int, int> d; // Iterate over array for (int i = 0; i < n; i++) d[arr[i]] = arr[i]; int cnt = 1; int fl = 0; // Iterate to find missing // element for (int i = 0; i < (n + k); i++) { if (d.find(cnt) == d.end()) { fl += 1; cout << cnt << " "; if (fl == k) break; } cnt += 1; }}// Driver Codeint main(){ int arr[] = {1, 4, 3}; int n = sizeof(arr) / sizeof(arr[0]); int k = 3;; printmissingk(arr, n, k);}// This code is contributed by Chitranayal |
Java
// Java code for// the above approachimport java.io.*;import java.util.HashMap;class GFG{ // Program to print first k // missing number static void printmissingk(int arr[], int n, int k) { // Creating a hashmap HashMap<Integer, Integer> d = new HashMap<>(); // Iterate over array for (int i = 0; i < n; i++) d.put(arr[i], arr[i]); int cnt = 1; int fl = 0; // Iterate to find missing // element for (int i = 0; i < (n + k); i++) { if (!d.containsKey(cnt)) { fl += 1; System.out.print(cnt + " "); if (fl == k) break; } cnt += 1; } } // Driver Code public static void main(String[] args) { int arr[] = { 1, 4, 3 }; int n = arr.length; int k = 3; printmissingk(arr, n, k); }}// This code is contributed by subhammahato348. |
Python3
# Python3 code for above approach# Program to print first k# missing numberdef printmissingk(arr,n,k): #creating a hashmap d={} # Iterate over array for i in range(len(arr)): d[arr[i]]=arr[i] cnt=1 fl=0 # Iterate to find missing # element for i in range(n+k): if cnt not in d: fl+=1 print(cnt,end=" ") if fl==k: break cnt+=1 print()# Driver Codearr=[1,4,3]n=len(arr)k=3printmissingk(arr,n,k)#This code is contributed by Thirumalai Srinivasan |
C#
// C# code for// the above approachusing System;using System.Collections.Generic;public class GFG{ // Program to print first k // missing number static void printmissingk(int[] arr, int n, int k) { // Creating a hashmap Dictionary<int,int> d = new Dictionary<int,int>(); // Iterate over array for (int i = 0; i < n; i++) { d.Add(arr[i], arr[i]); } int cnt = 1; int fl = 0; // Iterate to find missing // element for (int i = 0; i < (n + k); i++) { if (!d.ContainsKey(cnt)) { fl += 1; Console.Write(cnt + " "); if (fl == k) break; } cnt += 1; } } // Driver Code static public void Main (){ int[] arr = { 1, 4, 3 }; int n = arr.Length; int k = 3; printmissingk(arr, n, k); }}// This code is contributed by avanitrachhadiya2155 |
Javascript
<script>// Javascript code for// the above approach// Program to print first k // missing numberfunction printmissingk(arr,n,k){ // Creating a hashmap let d = new Map(); // Iterate over array for (let i = 0; i < n; i++) d.set(arr[i], arr[i]); let cnt = 1; let fl = 0; // Iterate to find missing // element for (let i = 0; i < (n + k); i++) { if (!d.has(cnt)) { fl += 1; document.write(cnt + " "); if (fl == k) break; } cnt += 1; }}// Driver Codelet arr=[1, 4, 3];let n = arr.length;let k = 3;printmissingk(arr, n, k);// This code is contributed by ab2127</script> |
Output
2 5 6
Time complexity: O(n+k)
Auxiliary Space: O(n)
This article is contributed by Biswajit Mohapatra. If you like zambiatek and would like to contribute, you can also write an article using write.zambiatek.com or mail your article to review-team@zambiatek.com. See your article appearing on the zambiatek main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



