Iterative approach to print all combinations of an Array

Given an array arr[] of size N, the task is to generate and print all possible combinations of R elements in array. Examples:
Input: arr[] = {0, 1, 2, 3}, R = 3 Output: 0 1 2 0 1 3 0 2 3 1 2 3 Input: arr[] = {1, 3, 4, 5, 6, 7}, R = 5 Output: 1 3 4 5 6 1 3 4 5 7 1 3 4 6 7 1 3 5 6 7 1 4 5 6 7 3 4 5 6 7
Approach: Recursive methods are discussed here. In this post, an iterative method to output all combinations for a given array will be discussed. The iterative method acts as a state machine. When the machine is called, it outputs a combination and move to the next one. For a combination of r elements from an array of size n, a given element may be included or excluded from the combination. Let’s have a Boolean array of size n to label whether the corresponding element in data array is included. If the ith element in the data array is included, then the ith element in the boolean array is true or false otherwise. Then, r booleans in the boolean array will be labelled as true. We can initialize the boolean array to have r trues from index 0 to index r – 1. During the iteration, we scan the boolean array from left to right and find the first element which is true and whose previous one is false and the first element which is true and whose next one is false. Then, we have the first continuous tract of trues in the Boolean array. Assume there are m trues in this tract, starting from index Start and ending at index End. The next iteration would be
- Set index End + 1 of the boolean array to true.
- Set index Start to index End – 1 of the boolean array to false.
- Set index 0 to index k – 2 to true.
For example, If the current boolean array is {0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0}, then k = 4, Start = 2, and End = 5. The next Boolean array would be {1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0}. In case Start == End where there is only one true in the tract, we simply set index End to false and index End + 1 to true. We also need to record the current Start and End and update Start and End during each iteration. When the last r booleans are set to true, we cannot move to the next combination and we stop. The following image illustrates how the boolean array changes from one iteration to another. 
C++
// C++ implementation of the approach#include <iostream>using namespace std;Â
class Combination {private:    // Data array for combination    int* Indices;Â
    // Length of the data array    int N;Â
    // Number of elements in the combination    int R;Â
    // The boolean array    bool* Flags;Â
    // Starting index of the 1st tract of trues    int Start;Â
    // Ending index of the 1st tract of trues    int End;Â
public:    // Constructor    Combination(int* arr, int n, int r)    {        this->Indices = arr;        this->N = n;        this->R = r;        this->Flags = nullptr;    }    ~Combination()    {        if (this->Flags != nullptr) {            delete[] this->Flags;        }    }Â
    // Set the 1st r Booleans to true,    // initialize Start and End    void GetFirst()    {        this->Flags = new bool[N];Â
        // Generate the very first combination        for (int i = 0; i < this->N; ++i) {            if (i < this->R) {                Flags[i] = true;            }            else {                Flags[i] = false;            }        }Â
        // Update the starting ending indices        // of trues in the boolean array        this->Start = 0;        this->End = this->R - 1;        this->Output();    }Â
    // Function that returns true if another    // combination can still be generated    bool HasNext()    {        return End < (this->N - 1);    }Â
    // Function to generate the next combination    void Next()    {Â
        // Only one true in the tract        if (this->Start == this->End) {            this->Flags[this->End] = false;            this->Flags[this->End + 1] = true;            this->Start += 1;            this->End += 1;            while (this->End + 1 < this->N                   && this->Flags[this->End + 1]) {                ++this->End;            }        }        else {Â
            // Move the End and reset the End            if (this->Start == 0) {                Flags[this->End] = false;                Flags[this->End + 1] = true;                this->End -= 1;            }            else {                Flags[this->End + 1] = true;Â
                // Set all the values to false starting from                // index Start and ending at index End                // in the boolean array                for (int i = this->Start; i <= this->End; ++i) {                    Flags[i] = false;                }Â
                // Set the beginning elements to true                for (int i = 0; i < this->End - this->Start; ++i) {                    Flags[i] = true;                }Â
                // Reset the End                this->End = this->End - this->Start - 1;                this->Start = 0;            }        }        this->Output();    }Â
private:    // Function to print the combination generated previouslt    void Output()    {        for (int i = 0, count = 0; i < this->N                                   && count < this->R;             ++i) {Â
            // If current index is set to true in the boolean array            // then element at current index in the original array            // is part of the combination generated previously            if (Flags[i]) {                cout << Indices[i] << " ";                ++count;            }        }        cout << endl;    }};Â
// Driver codeint main(){Â Â Â Â int arr[] = { 0, 1, 2, 3 };Â Â Â Â int n = sizeof(arr) / sizeof(int);Â Â Â Â int r = 3;Â Â Â Â Combination com(arr, n, r);Â Â Â Â com.GetFirst();Â Â Â Â while (com.HasNext()) {Â Â Â Â Â Â Â Â com.Next();Â Â Â Â }Â Â Â Â return 0;} |
Java
// Java implementation of the approachclass Combination {Â
    // Data array for combination    private int[] Indices;Â
    // Number of elements in the combination    private int R;Â
    // The boolean array    private boolean[] Flags;Â
    // Starting index of the 1st tract of trues    private int Start;Â
    // Ending index of the 1st tract of trues    private int End;Â
    // Constructor    public Combination(int[] arr, int r)    {        this.Indices = arr;        this.R = r;    }Â
    // Set the 1st r Booleans to true,    // initialize Start and End    public void GetFirst()    {        Flags = new boolean[this.Indices.length];Â
        // Generate the very first combination        for (int i = 0; i < this.R; ++i)         {            Flags[i] = true;        }Â
        // Update the starting ending indices        // of trues in the boolean array        this.Start = 0;        this.End = this.R - 1;        this.Output();    }Â
    // Function that returns true if another    // combination can still be generated    public boolean HasNext()    {        return End < (this.Indices.length - 1);    }Â
    // Function to generate the next combination    public void Next()    {Â
        // Only one true in the tract        if (this.Start == this.End)        {            this.Flags[this.End] = false;            this.Flags[this.End + 1] = true;            this.Start += 1;            this.End += 1;            while (this.End + 1 < this.Indices.length                && this.Flags[this.End + 1])             {                ++this.End;            }        }        else        {Â
            // Move the End and reset the End            if (this.Start == 0)            {                Flags[this.End] = false;                Flags[this.End + 1] = true;                this.End -= 1;            }            else            {                Flags[this.End + 1] = true;Â
                // Set all the values to false starting from                // index Start and ending at index End                // in the boolean array                for (int i = this.Start; i <= this.End; ++i)                {                    Flags[i] = false;                }Â
                // Set the beginning elements to true                for (int i = 0; i < this.End - this.Start; ++i)                 {                    Flags[i] = true;                }Â
                // Reset the End                this.End = this.End - this.Start - 1;                this.Start = 0;            }        }        this.Output();    }Â
    // Function to print the combination generated previouslt    private void Output()    {        for (int i = 0, count = 0; i < Indices.length                                && count < this.R; ++i)        {Â
            // If current index is set to true in the boolean array            // then element at current index in the original array            // is part of the combination generated previously            if (Flags[i])             {                System.out.print(Indices[i]);                System.out.print(" ");                ++count;            }        }        System.out.println();    }}Â
// Driver codeclass GFG {Â Â Â Â public static void main(String[] args)Â Â Â Â {Â Â Â Â Â Â Â Â int[] arr = { 0, 1, 2, 3 };Â Â Â Â Â Â Â Â int r = 3;Â Â Â Â Â Â Â Â Combination com = new Combination(arr, r);Â Â Â Â Â Â Â Â com.GetFirst();Â Â Â Â Â Â Â Â while (com.HasNext())Â Â Â Â Â Â Â Â {Â Â Â Â Â Â Â Â Â Â Â Â com.Next();Â Â Â Â Â Â Â Â }Â Â Â Â }}Â
// This code is contributed by Rajput-Ji |
Python3
# Python 3 implementation of the approachclass Combination :    # Data array for combination    Indices = None         # Number of elements in the combination    R = 0         # The boolean array    Flags = None         # Starting index of the 1st tract of trues    Start = 0         # Ending index of the 1st tract of trues    End = 0         # Constructor    def __init__(self, arr, r) :        self.Indices = arr        self.R = r             # Set the 1st r Booleans to true,    # initialize Start and End    def GetFirst(self) :        self.Flags = [False] * (len(self.Indices))                 # Generate the very first combination        i = 0        while (i < self.R) :            self.Flags[i] = True            i += 1                     # Update the starting ending indices        # of trues in the boolean array        self.Start = 0        self.End = self.R - 1        self.Output()             # Function that returns true if another    # combination can still be generated    def HasNext(self) :        return self.End < (len(self.Indices) - 1)           # Function to generate the next combination    def Next(self) :               # Only one true in the tract        if (self.Start == self.End) :            self.Flags[self.End] = False            self.Flags[self.End + 1] = True            self.Start += 1            self.End += 1            while (self.End + 1 < len(self.Indices) and self.Flags[self.End + 1]) :                self.End += 1        else :                       # Move the End and reset the End            if (self.Start == 0) :                self.Flags[self.End] = False                self.Flags[self.End + 1] = True                self.End -= 1            else :                self.Flags[self.End + 1] = True                                 # Set all the values to false starting from                # index Start and ending at index End                # in the boolean array                i = self.Start                while (i <= self.End) :                    self.Flags[i] = False                    i += 1                                     # Set the beginning elements to true                i = 0                while (i < self.End - self.Start) :                    self.Flags[i] = True                    i += 1                                     # Reset the End                self.End = self.End - self.Start - 1                self.Start = 0        self.Output()             # Function to print the combination generated previouslt    def Output(self) :        i = 0        count = 0        while (i < len(self.Indices) and count < self.R) :                       # If current index is set to true in the boolean array            # then element at current index in the original array            # is part of the combination generated previously            if (self.Flags[i]) :                print(self.Indices[i], end ="")                print(" ", end ="")                count += 1            i += 1        print()         # Driver codeclass GFG :    @staticmethod    def main( args) :        arr = [0, 1, 2, 3]        r = 3        com = Combination(arr, r)        com.GetFirst()        while (com.HasNext()) :            com.Next()     if __name__=="__main__":    GFG.main([])         # This code is contributed by aadityaburujwale. |
C#
// C# implementation of the approachusing System;namespace IterativeCombination {class Combination {Â
    // Data array for combination    private int[] Indices;Â
    // Number of elements in the combination    private int R;Â
    // The boolean array    private bool[] Flags;Â
    // Starting index of the 1st tract of trues    private int Start;Â
    // Ending index of the 1st tract of trues    private int End;Â
    // Constructor    public Combination(int[] arr, int r)    {        this.Indices = arr;        this.R = r;    }Â
    // Set the 1st r Booleans to true,    // initialize Start and End    public void GetFirst()    {        Flags = new bool[this.Indices.Length];Â
        // Generate the very first combination        for (int i = 0; i < this.R; ++i) {            Flags[i] = true;        }Â
        // Update the starting ending indices        // of trues in the boolean array        this.Start = 0;        this.End = this.R - 1;        this.Output();    }Â
    // Function that returns true if another    // combination can still be generated    public bool HasNext()    {        return End < (this.Indices.Length - 1);    }Â
    // Function to generate the next combination    public void Next()    {Â
        // Only one true in the tract        if (this.Start == this.End) {            this.Flags[this.End] = false;            this.Flags[this.End + 1] = true;            this.Start += 1;            this.End += 1;            while (this.End + 1 < this.Indices.Length                   && this.Flags[this.End + 1]) {                ++this.End;            }        }        else {Â
            // Move the End and reset the End            if (this.Start == 0) {                Flags[this.End] = false;                Flags[this.End + 1] = true;                this.End -= 1;            }            else {                Flags[this.End + 1] = true;Â
                // Set all the values to false starting from                // index Start and ending at index End                // in the boolean array                for (int i = this.Start; i <= this.End; ++i) {                    Flags[i] = false;                }Â
                // Set the beginning elements to true                for (int i = 0; i < this.End - this.Start; ++i) {                    Flags[i] = true;                }Â
                // Reset the End                this.End = this.End - this.Start - 1;                this.Start = 0;            }        }        this.Output();    }Â
    // Function to print the combination generated previouslt    private void Output()    {        for (int i = 0, count = 0; i < Indices.Length                                   && count < this.R;             ++i) {Â
            // If current index is set to true in the boolean array            // then element at current index in the original array            // is part of the combination generated previously            if (Flags[i]) {                Console.Write(Indices[i]);                Console.Write(" ");                ++count;            }        }        Console.WriteLine();    }}Â
// Driver codeclass AppDriver {Â Â Â Â static void Main()Â Â Â Â {Â Â Â Â Â Â Â Â int[] arr = { 0, 1, 2, 3 };Â Â Â Â Â Â Â Â int r = 3;Â Â Â Â Â Â Â Â Combination com = new Combination(arr, r);Â Â Â Â Â Â Â Â com.GetFirst();Â Â Â Â Â Â Â Â while (com.HasNext()) {Â Â Â Â Â Â Â Â Â Â Â Â com.Next();Â Â Â Â Â Â Â Â }Â Â Â Â }}} |
Javascript
//Javascript code for the above approachclass Combination {// Data array for combinationIndices = null;Â
// Number of elements in the combinationR = 0;Â
// The boolean arrayFlags = null;Â
// Starting index of the 1st tract of truesStart = 0;Â
// Ending index of the 1st tract of truesEnd = 0;Â
// Constructorconstructor(arr, r) {Â Â Â Â this.Indices = arr;Â Â Â Â this.R = r;}Â
// Set the 1st r Booleans to true,// initialize Start and EndGetFirst() {    this.Flags = Array(this.Indices.length).fill(false);         // Generate the very first combination    let i = 0;    while (i < this.R) {        this.Flags[i] = true;        i += 1;    }         // Update the starting ending indices    // of trues in the boolean array    this.Start = 0;    this.End = this.R - 1;    this.Output();}Â
// Function that returns true if another// combination can still be generatedHasNext() {Â Â Â Â return this.End < (this.Indices.length - 1);}Â
// Function to generate the next combinationNext() {    // Only one true in the tract    if (this.Start === this.End) {        this.Flags[this.End] = false;        this.Flags[this.End + 1] = true;        this.Start += 1;        this.End += 1;        while (this.End + 1 < this.Indices.length && this.Flags[this.End + 1]) {            this.End += 1;        }    } else {        // Move the End and reset the End        if (this.Start === 0) {            this.Flags[this.End] = false;            this.Flags[this.End + 1] = true;            this.End -= 1;        } else {            this.Flags[this.End + 1] = true;                         // Set all the values to false starting from            // index Start and ending at index End            // in the boolean array            let i = this.Start;            while (i <= this.End) {                this.Flags[i] = false;                i += 1;            }                         // Set the beginning elements to true            i = 0;            while (i < this.End - this.Start) {                this.Flags[i] = true;                i += 1;            }                         // Reset the End            this.End = this.End - this.Start - 1;            this.Start = 0;        }        this.Output();    }}Â
// Function to print the combination generated previousltOutput() {    let i = 0;    let count = 0;    while (i < this.Indices.length && count < this.R) {        // If current index is set to true in the boolean array        // then element at current index in the original array is part of the combination generated previouslyif (this.Flags[i]) {document.write(this.Indices[i], " ");count += 1;}i += 1;}document.write("<br>");}}Â
// Driver codeclass GFG {static main() {let arr = [0, 1, 2, 3];let r = 3;let com = new Combination(arr, r);com.GetFirst();while (com.HasNext()) {com.Next();}}}Â
if (require.main === module) {GFG.main();} |
Javascript
//JS code for the above approachclass Combination {// Data array for combinationIndices = null;Â
// Number of elements in the combinationR = 0;Â
// The boolean arrayFlags = null;Â
// Starting index of the 1st tract of truesStart = 0;Â
// Ending index of the 1st tract of truesEnd = 0;Â
// Constructorconstructor(arr, r) {Â Â Â Â this.Indices = arr;Â Â Â Â this.R = r;}Â
// Set the 1st r Booleans to true,// initialize Start and EndGetFirst() {    this.Flags = Array(this.Indices.length).fill(false);         // Generate the very first combination    for (let i = 0; i < this.R; i++) {        this.Flags[i] = true;    }         // Update the starting ending indices    // of trues in the boolean array    this.Start = 0;    this.End = this.R - 1;    this.Output();}Â
// Function that returns true if another// combination can still be generatedHasNext() {Â Â Â Â return this.End < (this.Indices.length - 1);}Â
// Function to generate the next combinationNext(){Â
    // Only one true in the tract    if (this.Start === this.End) {        this.Flags[this.End] = false;        this.Flags[this.End + 1] = true;        this.Start += 1;        this.End += 1;        while (this.End + 1 < this.Indices.length && this.Flags[this.End + 1]) {            this.End += 1;}} else{Â
// Move the End and reset the Endif (this.Start === 0) {this.Flags[this.End] = false;this.Flags[this.End + 1] = true;this.End -= 1;} else {this.Flags[this.End + 1] = true;Â
            // Set all the values to false starting from            // index Start and ending at index End            // in the boolean array            for (let i = this.Start; i <= this.End; i++) {                this.Flags[i] = false;            }                         // Set the beginning elements to true            for (let i = 0; i < this.End - this.Start; i++) {                this.Flags[i] = true;            }                         // Reset the End            this.End = this.End - this.Start - 1;            this.Start = 0;        }    }    this.Output();}Â
// Function to print the combination generated previouslyOutput() {    for (let i = 0, count = 0; i < this.Indices.length && count < this.R; i++)    {             // If current index is set to true in the boolean array        // then element at current index in the original array        // is part of the combination generated previously        if (this.Flags[i]) {            console.log(this.Indices[i], " ");            count += 1;        }    }    console.log("<br>");}}Â
// Driver codeclass GFG {static main() {let arr = [0, 1, 2, 3];let r = 3;let com = new Combination(arr, r);com.GetFirst();while (com.HasNext()) {com.Next();}}}Â
if (require.main === module) {GFG.main();}Â
// This code is contributed by lokeshpotta20. |
0 1 2 0 1 3 0 2 3 1 2 3
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



