Remove minimum elements from ends of array so that sum decreases by at least K | O(N)

Given an array arr[] consisting of N elements, the task is to remove minimum number of elements from the ends of the array such that the total sum of the array decreases by at least K. Note that K will always be less than or equal to the sum of all the elements of the array.
Examples:
Input: arr[] = {1, 11, 5, 5}, K = 11
Output: 2
After removing two elements form the left
end, the sum decreases by 1 + 11 = 12.
Thus, the answer is 2.Input: arr[] = {1, 2, 3}, K = 6
Output: 3
Approach: A dynamic programming-based approach has already been discussed in another post. In this article, an approach using the two-pointer technique will be discussed. It can be observed that the task is to find the longest sub-array with the sum of its elements at most sum(arr) – K where sum(arr) is the sum of all the elements of the array arr[].
Let the length of such subarray be L. Thus, the minimum number of elements to be removed from the array will be equal to N – L. To find the length of longest such subarray, refer this article.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return the count of minimum// elements to be removed from the ends// of the array such that the sum of the// array decrease by at least Kint minCount(int* arr, int n, int k){ // To store the final answer int ans = 0; // Maximum possible sum required int sum = 0; for (int i = 0; i < n; i++) sum += arr[i]; sum -= k; // Left point int l = 0; // Right pointer int r = 0; // Total current sum int tot = 0; // Two pointer loop while (l < n) { // If the sum fits if (tot <= sum) { // Update the answer ans = max(ans, r - l); if (r == n) break; // Update the total sum tot += arr[r++]; } else { // Increment the left pointer tot -= arr[l++]; } } return (n - ans);}// Driver codeint main(){ int arr[] = { 1, 11, 5, 5 }; int n = sizeof(arr) / sizeof(int); int k = 11; cout << minCount(arr, n, k); return 0;} |
Java
// Java implementation of the approach class GFG{ // Function to return the count of minimum // elements to be removed from the ends // of the array such that the sum of the // array decrease by at least K static int minCount(int arr[], int n, int k) { // To store the final answer int ans = 0; // Maximum possible sum required int sum = 0; for (int i = 0; i < n; i++) sum += arr[i]; sum -= k; // Left point int l = 0; // Right pointer int r = 0; // Total current sum int tot = 0; // Two pointer loop while (l < n) { // If the sum fits if (tot <= sum) { // Update the answer ans = Math.max(ans, r - l); if (r == n) break; // Update the total sum tot += arr[r++]; } else { // Increment the left pointer tot -= arr[l++]; } } return (n - ans); } // Driver code public static void main (String[] args) { int arr[] = { 1, 11, 5, 5 }; int n = arr.length; int k = 11; System.out.println(minCount(arr, n, k)); } }// This code is contributed by AnkitRai01 |
Python3
# Python3 implementation of the approach # Function to return the count of minimum # elements to be removed from the ends # of the array such that the sum of the # array decrease by at least K def minCount(arr, n, k) : # To store the final answer ans = 0; # Maximum possible sum required sum = 0; for i in range(n) : sum += arr[i]; sum -= k; # Left point l = 0; # Right pointer r = 0; # Total current sum tot = 0; # Two pointer loop while (l < n) : # If the sum fits if (tot <= sum) : # Update the answer ans = max(ans, r - l); if (r == n) : break; # Update the total sum tot += arr[r]; r += 1 else : # Increment the left pointer tot -= arr[l]; l += 1 return (n - ans); # Driver code if __name__ == "__main__" : arr = [ 1, 11, 5, 5 ]; n = len(arr); k = 11; print(minCount(arr, n, k)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System;class GFG{ // Function to return the count of minimum // elements to be removed from the ends // of the array such that the sum of the // array decrease by at least K static int minCount(int []arr, int n, int k) { // To store the final answer int ans = 0; // Maximum possible sum required int sum = 0; for (int i = 0; i < n; i++) sum += arr[i]; sum -= k; // Left point int l = 0; // Right pointer int r = 0; // Total current sum int tot = 0; // Two pointer loop while (l < n) { // If the sum fits if (tot <= sum) { // Update the answer ans = Math.Max(ans, r - l); if (r == n) break; // Update the total sum tot += arr[r++]; } else { // Increment the left pointer tot -= arr[l++]; } } return (n - ans); } // Driver code public static void Main() { int []arr = { 1, 11, 5, 5 }; int n = arr.Length; int k = 11; Console.WriteLine(minCount(arr, n, k)); } }// This code is contributed by AnkitRai01 |
Javascript
<script>// Javascript implementation of the approach// Function to return the count of minimum// elements to be removed from the ends// of the array such that the sum of the// array decrease by at least Kfunction minCount(arr, n, k){ // To store the final answer var ans = 0; // Maximum possible sum required var sum = 0; for (var i = 0; i < n; i++) sum += arr[i]; sum -= k; // Left point var l = 0; // Right pointer var r = 0; // Total current sum var tot = 0; // Two pointer loop while (l < n) { // If the sum fits if (tot <= sum) { // Update the answer ans = Math.max(ans, r - l); if (r == n) break; // Update the total sum tot += arr[r++]; } else { // Increment the left pointer tot -= arr[l++]; } } return (n - ans);}// Driver codevar arr = [1, 11, 5, 5 ];var n = arr.length;var k = 11;document.write( minCount(arr, n, k));// This code is contributed by noob2000.</script> |
2
Time Complexity: O(n), where n is the size of the given array.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



