Arrangements of N and M items of two types when max X and Y items of each can be consecutive

Given 4 numbers N, M, X, Y. which represent N numbers for the first item and M numbers for the second item, the task is to find the number of arrangements of N + M items together such that not more than X first items and not more than Y second items are placed successively.
Examples:
Input: N = 2, M = 1, X = 1, Y = 10
Output: 1
Explanation: Let’s mark the first item as 1
and the second item as 2 the only arrangement possible is 121.Input: N = 2, M = 3, X = 1, Y = 2
Output: 5
Explanation: Lets mark the first element as 1 and second element as 2.
The arrangements possible are 12122, 12212, 21212, 21221, 22121.
Approach: To solve the problem follow the below observations and steps:
There are many possibilities of placing up to X first items and then up to Y second items. So to check each and every possibility we can use dynamic programming.
Since at each step N, M, X, and Y will change so there will be 4 states of dp[] array.
Let the f(n, m, x, y) represents number of ways to choose to make a valid arrangement with x consecutive 1st type elements and y consecutive elements.
So there can be 2 cases: We place first type element: f(n-1, m, x-1, y) or
we choose second type of element: f(n, m-1, x, y-1)So f(n, m, x, y) = f(n – 1, m, x – 1, y) + f(n, m – 1, x, y – 1)
Here is the case that if m or n becomes 0 then on the next iteration we cannot use another consecutive element if 1st or 2nd type.
Follow the below steps to implement the approach:
- Create a recursive function and a 4dimensional array (say dp[]) that will store each of the states.
- Recursively call the functions as mentioned above maintaining the mentioned edge case.
- Return the final value stored at dp[N][M][X][Y] as the required answer.
Below is the implementation of the above approach:
C++14
// C++ code to implement the approach.#include <bits/stdc++.h>using namespace std;// dp arrayint dp[101][101][11][11];// To store original value of X, Yint limit_f = 0, limit_s = 0;// Function to find number of waysint numofways(int n, int m, int x, int y){ // Base case if n1+n2 is 0 that all // items are placed then 1 arrangement // is complete if (n + m == 0) return 1; int f = 0, s = 0; if (dp[n][m][x][y] != -1) // The value is precomputed or not return dp[n][m][x][y]; // If 1st item can be placed if (n > 0 && x > 0) // Since we place the first item // there are limit_s second items // can be placed consecutively f = numofways(n - 1, m, x - 1, limit_s); if (m > 0 && y > 0) // Since we place the second item there // are limit_f first item can be // placed consecutively s = numofways(n, m - 1, limit_f, y - 1); // Total number of arrangements is // addition of 2 return dp[n][m][x][y] = (f + s);}// Driver codeint main(){ int N = 2, M = 3, X = 1, Y = 2; limit_f = X, limit_s = Y; // Initialization for (int i = 0; i <= N; i++) { for (int j = 0; j <= M; j++) { for (int k = 0; k <= X; k++) { for (int m = 0; m <= Y; m++) dp[i][j][k][m] = -1; } } } // Function call cout << numofways(N, M, X, Y) << endl; return 0;} |
Java
// Java code to implement the approach.import java.io.*;class GFG{ // dp array static int dp[][][][] = new int[101][101][11][11]; // To store original value of X, Y static int limit_f = 0, limit_s = 0; // Function to find number of ways public static int numofways(int n, int m, int x, int y) { // Base case if n1+n2 is 0 that all // items are placed then 1 arrangement // is complete if (n + m == 0) return 1; int f = 0, s = 0; if (dp[n][m][x][y] != -1) // The value is precomputed or not return dp[n][m][x][y]; // If 1st item can be placed if (n > 0 && x > 0) // Since we place the first item // there are limit_s second items // can be placed consecutively f = numofways(n - 1, m, x - 1, limit_s); if (m > 0 && y > 0) // Since we place the second item there // are limit_f first item can be // placed consecutively s = numofways(n, m - 1, limit_f, y - 1); // Total number of arrangements is // addition of 2 return dp[n][m][x][y] = (f + s); } // Driver Code public static void main(String[] args) { int N = 2, M = 3, X = 1, Y = 2; limit_f = X; limit_s = Y; // Initialization for (int i = 0; i <= N; i++) { for (int j = 0; j <= M; j++) { for (int k = 0; k <= X; k++) { for (int m = 0; m <= Y; m++) dp[i][j][k][m] = -1; } } } // Function call System.out.println(numofways(N, M, X, Y)); }}// This code is contributed by Rohit Pradhan |
Python3
# dp arraydp = [-1] * 101;for i in range(0, len(dp)): dp[i] = [-1] * 101 for j in range(0,len(dp[i])): dp[i][j] = [-1] * 11 for k in range(0,len(dp[i][j])): dp[i][j][k] = [-1] * 11# To store original value of X, Ylimit_f = 0limit_s = 0# Function to find number of waysdef numofways(n, m, x, y): # Base case if n1+n2 is 0 that all # items are placed then 1 arrangement # is complete if (n + m is 0): return 1 f = 0 s = 0 if (dp[n][m][x][y] != -1): # The value is precomputed or not return dp[n][m][x][y] # If 1st item can be placed if (n > 0 and x > 0): # Since we place the first item # there are limit_s second items # can be placed consecutively f = numofways(n - 1, m, x - 1, limit_s) if (m > 0 and y > 0): # Since we place the second item there # are limit_f first item can be # placed consecutively s = numofways(n, m - 1, limit_f, y - 1) # Total number of arrangements is # addition of 2 dp[n][m][x][y] = (f+s) return dp[n][m][x][y] # Driver codeN = 2M = 3X = 1Y = 2limit_f = Xlimit_s = Y# Initializationfor i in range(0,N+1): for j in range(0,M+1): for k in range(0,X+1): for m in range(0,Y+1): dp[i][j][k][m] = -1# Function callprint(numofways(N, M, X, Y))# This code is contributed by akashish__ |
C#
// C# code to implement the approachusing System;public class GFG{ // dp array public static int [,,,] dp = new int[101,101,11,11]; // To store original value of X, Y public static int limit_f = 0; public static int limit_s = 0; // Function to find number of ways public static int numofways(int n, int m, int x, int y) { // Base case if n1+n2 is 0 that all // items are placed then 1 arrangement // is complete if (n + m == 0) return 1; int f = 0, s = 0; if (dp[n,m,x,y] != -1) // The value is precomputed or not return dp[n,m,x,y]; // If 1st item can be placed if (n > 0 && x > 0) // Since we place the first item // there are limit_s second items // can be placed consecutively f = numofways(n - 1, m, x - 1, limit_s); if (m > 0 && y > 0) // Since we place the second item there // are limit_f first item can be // placed consecutively s = numofways(n, m - 1, limit_f, y - 1); // Total number of arrangements is // addition of 2 return dp[n,m,x,y] = (f + s); } public static void Main(string[] args) { int N = 2, M = 3, X = 1, Y = 2; limit_f = X; limit_s = Y; // Initialization for (int i = 0; i <= N; i++) { for (int j = 0; j <= M; j++) { for (int k = 0; k <= X; k++) { for (int m = 0; m <= Y; m++) dp[i,j,k,m] = -1; } } } // Function call Console.WriteLine(numofways(N, M, X, Y)); }}// This code is contributed by ksam24000 |
Javascript
<script> // JavaScript code for the above approach let dp = new Array(101); for (let i = 0; i < dp.length; i++) { dp[i] = new Array(101); for (let j = 0; j < dp[i].length; j++) { dp[i][j] = new Array(11); for (let k = 0; k < dp[i][j].length; k++) { dp[i][j][k] = new Array(11); } } } // To store original value of X, Y let limit_f = 0, limit_s = 0; // Function to find number of ways function numofways(n, m, x, y) { // Base case if n1+n2 is 0 that all // items are placed then 1 arrangement // is complete if (n + m == 0) return 1; let f = 0, s = 0; if (dp[n][m][x][y] != -1) // The value is precomputed or not return dp[n][m][x][y]; // If 1st item can be placed if (n > 0 && x > 0) // Since we place the first item // there are limit_s second items // can be placed consecutively f = numofways(n - 1, m, x - 1, limit_s); if (m > 0 && y > 0) // Since we place the second item there // are limit_f first item can be // placed consecutively s = numofways(n, m - 1, limit_f, y - 1); // Total number of arrangements is // addition of 2 return dp[n][m][x][y] = (f + s); } // Driver code let N = 2, M = 3, X = 1, Y = 2; limit_f = X, limit_s = Y; // Initialization for (let i = 0; i <= N; i++) { for (let j = 0; j <= M; j++) { for (let k = 0; k <= X; k++) { for (let m = 0; m <= Y; m++) dp[i][j][k][m] = -1; } } } // Function call document.write(numofways(N, M, X, Y));// This code is contributed by Potta Lokesh </script> |
5
Time Complexity: O(N * M * X * Y)
Auxiliary Space: O(N * M * X * Y),
Efficient approach : Using DP Tabulation method ( Iterative approach )
The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.
Below is the implentation of the above approach:
C++
// C++ code to implement the approach.#include <bits/stdc++.h>using namespace std;// Function to find number of waysint numofways(int n, int m, int x, int y){ // dp array int dp[n + 1][m + 1][x + 1][y + 1]; // initialize dp with base cases memset(dp, 0, sizeof(dp)); // Base case initialization for (int i = 0; i <= n; i++) { for (int j = 0; j <= m; j++) { for (int k = 0; k <= x; k++) { for (int l = 0; l <= y; l++) { if (i + j == 0) dp[i][j][k][l] = 1; } } } } // iterate over subproblems and get the current // solution for previous computations for (int i = 0; i <= n; i++) { for (int j = 0; j <= m; j++) { for (int k = 0; k <= x; k++) { for (int l = 0; l <= y; l++) { if (dp[i][j][k][l] == 0) { int f = 0, s = 0; if (i > 0 && k > 0) f = dp[i - 1][j][k - 1][y]; if (j > 0 && l > 0) s = dp[i][j - 1][x][l - 1]; dp[i][j][k][l] = f + s; } } } } } // return answer return dp[n][m][x][y];}// Driver codeint main(){ int N = 2, M = 3, X = 1, Y = 2; // Function call cout << numofways(N, M, X, Y) << endl; return 0;} |
Python3
def num_of_ways(n, m, x, y): # Initialize dp array with zeros dp = [[[[0 for _ in range(y + 1)] for _ in range(x + 1)] for _ in range(m + 1)] for _ in range(n + 1)] # Base case initialization for i in range(n + 1): for j in range(m + 1): for k in range(x + 1): for l in range(y + 1): if i + j == 0: dp[i][j][k][l] = 1 # Iterate over subproblems and compute the current solution based on previous computations for i in range(n + 1): for j in range(m + 1): for k in range(x + 1): for l in range(y + 1): if dp[i][j][k][l] == 0: f, s = 0, 0 if i > 0 and k > 0: f = dp[i - 1][j][k - 1][y] if j > 0 and l > 0: s = dp[i][j - 1][x][l - 1] dp[i][j][k][l] = f + s # Return the answer return dp[n][m][x][y]# Driver codeif __name__ == "__main__": N, M, X, Y = 2, 3, 1, 2 # Function call print(num_of_ways(N, M, X, Y)) |
5
Time Complexity: O(N * M * X * Y)
Auxiliary Space: O(N * M * X * Y),
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



