scipy stats.halfgennorm() | Python

scipy.stats.halfgennorm() is an upper half of a generalized normal continuous random variable. To complete its specificaitons, it is defined with a standard format and some shape parameters. The object object inherits from it a collection of generic methods and completes them with details specific.
Parameters :
-> α : scale -> β : shape -> μ : location
Code #1 : Creating Half-generalized normal continuous random variable
| fromscipy.stats importhalfgennorm     Ânumargs =halfgennorm.numargs [a] =[0.7, ] *numargs rv =halfgennorm (a)   Âprint("RV : \n", rv)   | 
Output:
RV : scipy.stats._distn_infrastructure.rv_frozen object at 0x0000021FB55D8DD8
Code #2 : Half-generalized random variates and probability distribution
| importnumpy as np quantile =np.arange (0.01, 1, 0.1)    Â# Random Variates R =halfgennorm .rvs(.2, scale =2,  size =10) print("Random Variates : \n", R)   Â# PDF R =halfgennorm .pdf(quantile, .2, loc =0, scale =1) print("\nProbability Distribution : \n", R)  | 
Output:
Random Variates : [1.41299459e+03 3.51301175e+04 1.79981484e+05 2.90925518e+02 2.70178121e+05 1.31706797e+05 3.25898913e+01 1.62607410e+04 2.02263946e+04 1.97078668e+04] Probability Distribution : [0.00559658 0.0043805 0.00400834 0.0037776 0.00360957 0.00347731 0.00336825 0.00327549 0.00319482 0.00312348]
Code #3 : Graphical Representation.
| importnumpy as np importmatplotlib.pyplot as plt   Âdistribution =np.linspace(0, np.minimum(rv.dist.b, 3)) print("Distribution : \n", distribution)   Âplot =plt.plot(distribution, rv.pdf(distribution))  | 
Output:
Distribution : [0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633 1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714 2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102 2.93877551 3. ]
Code #4 : Varying Positional Arguments
| importmatplotlib.pyplot as plt importnumpy as np   Âx =np.linspace(0, 5, 100)   Â# Varying positional arguments y1 =halfgennorm .pdf(x, 1, 3) y2 =halfgennorm .pdf(x, 1, 4) plt.plot(x, y1, "*", x, y2, "r--")  | 
Output: 
 
				 
					



