Mahotas – Appropriate structuring element of image

In this article we will see how we can get the appropriate structuring element of the image in mahotas. A structuring element is a matrix that identifies the pixel in the image being processed and defines the neighborhood used in the processing of each pixel.
In this tutorial we will use “lena” image, below is the command to load it.
mahotas.demos.load('lena')
Below is the lena image
In order to do this we will use mahotas.get_structuring_elem method
Syntax : mahotas.get_structuring_elem(img, n)
Argument : It takes image object and integer as argument
Return : It returns numpy ndarray
Note : Input image should be filtered or should be loaded as grey
In order to filter the image we will take the image object which is numpy.ndarray and filter it with the help of indexing, below is the command to do this
image = image[:, :, 0]
Below is the implementation
Python3
# importing required librariesimport mahotasimport mahotas.demosfrom pylab import gray, imshow, showimport numpy as npimport matplotlib.pyplot as plt # loading imageimg = mahotas.demos.load('lena') # filtering imageimg = img.max(2)print("Image") # showing imageimshow(img)show()# getting structuring elementvalue = mahotas.get_structuring_elem(img, 1) # showing valueprint(value) |
Output :
Image
[[0 1 0] [1 1 1] [0 1 0]]
Another example
Python3
# importing required librariesimport mahotasimport numpy as npfrom pylab import gray, imshow, showimport osimport matplotlib.pyplot as plt # loading imageimg = mahotas.imread('dog_image.png')# filtering imageimg = img[:, :, 0] print("Image") # showing imageimshow(img)show()# getting structuring elementvalue = mahotas.get_structuring_elem(img, 2) # showing valueprint(value) |
Output :
Image
[[1 1 1] [1 1 1] [1 1 1]]




