Matplotlib.axes.Axes.set_path_effects() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
matplotlib.axes.Axes.set_path_effects() Function
The Axes.set_path_effects() function in axes module of matplotlib library is used to set the path effects.
Syntax: Axes.set_path_effects(self, path_effects)
Parameters: This method accepts only one parameters.
- path_effects : This parameter is the AbstractPathEffect.
Returns: This method does not return any value.
Below examples illustrate the matplotlib.axes.Axes.set_path_effects() function in matplotlib.axes:
Example 1:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np import matplotlib.patheffects as path_effects fig, ax = plt.subplots() t = ax.text(0.02, 0.5, 'GeeksForGeeks', fontsize = 40, weight = 1000, va ='center') t.set_path_effects([path_effects.PathPatchEffect(offset =(4, -4), hatch ='xxxx', facecolor ='gray'), path_effects.PathPatchEffect(edgecolor ='white', linewidth = 1.1, facecolor ='black')]) fig.suptitle('matplotlib.axes.Axes.set_path_effects() function\ Example\n', fontweight ="bold") plt.show() |
Output:
Example 2:
# Implementation of matplotlib function import matplotlib.pyplot as plt import matplotlib.patheffects as PathEffects import numpy as np fig, ax1 = plt.subplots() ax1.imshow([[1, 2], [2, 3]]) txt = ax1.annotate("Fourth", (1., 1.), (0., 0), arrowprops = dict(arrowstyle ="->", connectionstyle ="angle3", lw = 2), size = 20, ha ="center", path_effects =[PathEffects.withStroke(linewidth = 3, foreground ="w")]) txt.arrow_patch.set_path_effects([ PathEffects.Stroke(linewidth = 5, foreground ="w"), PathEffects.Normal()]) ax1.grid(True, linestyle ="-") pe = [PathEffects.withStroke(linewidth = 3, foreground ="w")] for l in ax1.get_xgridlines() + ax1.get_ygridlines(): l.set_path_effects(pe) fig.suptitle('matplotlib.axes.Axes.set_path_effects() \ function Example\n', fontweight ="bold") plt.show() |
Output:




