scipy stats.dweibull() | Python

scipy.stats.dweibull()  is an double weibull continuous random variable that is defined with a standard format and some shape parameters to complete its specification.
Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).Results : double weibull continuous random variable
Code #1 : Creating double weibull continuous random variable
| fromscipy.stats importdweibull   Ânumargs =dweibull.numargs [a] =[0.6, ] *numargs rv =dweibull(a)  Âprint("RV : \n", rv)   | 
Output :
RV : <scipy.stats._distn_infrastructure.rv_frozen object at 0x000001FDC8AA8E80>
Code #2 : double weibull random variates and probability distribution.
| importnumpy as np quantile =np.arange (0.01, 1, 0.1)   Â# Random Variates R =dweibull.rvs(a, scale =2,  size =10) print("Random Variates : \n", R)  Â# PDF R =dweibull.pdf(a, quantile, loc =0, scale =1) print("\nProbability Distribution : \n", R)  | 
Output :
Random Variates : [ 1.49793669 2.02019269 -1.8530545 -0.79018341 0.96852783 -14.70570461 -1.7957089 0.79819141 4.34335483 -0.96031661] Probability Distribution : [0.00306562 0.03367007 0.06402237 0.09391113 0.12314439 0.15155039 0.17897785 0.20529592 0.23039382 0.25418014]
Code #3 : Graphical Representation.
| importnumpy as np importmatplotlib.pyplot as plt  Âdistribution =np.linspace(0, np.minimum(rv.dist.b, 5)) print("Distribution : \n", distribution)  Âplot =plt.plot(distribution, rv.pdf(distribution))  | 
Output :
Distribution : [0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633 1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714 2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102 2.93877551 3. ]
Code #4 : Varying Positional Arguments
| importmatplotlib.pyplot as plt importnumpy as np  Âx =np.linspace(0, 5, 100)  Â# Varying positional arguments y1 =dweibull.pdf(x, 1, 6) y2 =dweibull.pdf(x, 1, 5) plt.plot(x, y1, "*", x, y2, "r--")  | 
Output : 
 
				 
					


