Matplotlib.axes.Axes.get_facecolor() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
matplotlib.axes.Axes.get_facecolor() Function
The Axes.get_facecolor() function in axes module of matplotlib library is used to get the facecolor of the Axes..
Syntax: Axes.get_facecolor(self)
Parameters: This method does not accept any parameters.
Returns:This method returns value of the facecolor of the Axes.
Below examples illustrate the matplotlib.axes.Axes.get_facecolor() function in matplotlib.axes:
Example 1:
# Implementation of matplotlib function import numpy as np import matplotlib.pyplot as plt x = np.arange(-5, 5, 0.01) y1 = -3 * x*x + 10 * x + 10y2 = 3 * x*x + x fig, ax = plt.subplots() ax.plot(x, y1, x, y2, color ='black') ax.fill_between(x, y1, y2, where = y2 >y1, facecolor ='green', alpha = 0.8) ax.fill_between(x, y1, y2, where = y2 <= y1,' facecolor ='black', alpha = 0.8) x = ax.get_facecolor() ax.text(-2, 80, "Value of facecolor : " +str(x), style ='italic', fontsize = 10, color ="green") ax.set_title('matplotlib.axes.Axes.get_facecolor()\ Example\n', fontsize = 12, fontweight ='bold') plt.show() |
Output:
Example 2:
# Implementation of matplotlib function import matplotlib.pyplot as plt import numpy as np data = ((30, 1000), (10, 28), (100, 30), (500, 800), (50, 10)) dim = len(data[0]) w = 0.6dimw = w / dim fig, ax = plt.subplots() x = np.arange(len(data)) for i in range(len(data[0])): y = [d[i] for d in data] b = ax.bar(x + i * dimw, y, dimw, bottom = 0.001) ax.set_xticks(x + dimw / 2) ax.set_xticklabels(map(str, x)) ax.set_yscale('log') x = ax.get_facecolor() ax.text(1, 2.3*(10**3), "Value of facecolor : " +str(x), style ='italic', fontsize = 10, color ="green") ax.set_title('matplotlib.axes.Axes.get_facecolor()\ Example\n', fontsize = 12, fontweight ='bold') plt.show() |
Output:




