Python | Pandas Series.dt.ceil

Series.dt can be used to access the values of the series as datetimelike and return several properties. Pandas Series.dt.ceil() function perform ceil operation on the data to the specified freq.
Syntax: Series.dt.ceil(*args, **kwargs)
Parameter :
freq : The frequency level to ceil the index toReturns : DatetimeIndex, TimedeltaIndex, or Series
Example #1:  Use Series.dt.ceil() function to ceil the datetime data of the given series object to the specified frequency.
| # importing pandas as pd importpandas as pd  Â# Creating the Series sr =pd.Series(['2012-12-31 08:45', '2019-1-1 12:30', '2008-02-2 10:30',                '2010-1-1 09:25', '2019-12-31 00:00'])  Â# Creating the index idx =['Day 1', 'Day 2', 'Day 3', 'Day 4', 'Day 5']  Â# set the index sr.index =idx  Â# Convert the underlying data to datetime  sr =pd.to_datetime(sr)  Â# Print the series print(sr)  | 
Output :
Now we will use Series.dt.ceil() function to ceil the datetime values in the given series object to Daily frequency.
| # ceil to daily frequency result =sr.dt.ceil(freq ='D')  Â# print the result print(result)  | 
Output :
As we can see in the output, the Series.dt.ceil() function has successfully ceiled the datetime values in the given series object to the specified frequency.
Example #2 :  Use Series.dt.ceil()  function to ceil the datetime data of the given series object to the specified frequency.
| # importing pandas as pd importpandas as pd  Â# Creating the Series sr =pd.Series(pd.date_range('2012-12-31 09:45', periods =5, freq ='T',                             tz ='Asia / Calcutta'))  Â# Creating the index idx =['Day 1', 'Day 2', 'Day 3', 'Day 4', 'Day 5']  Â# set the index sr.index =idx  Â# Print the series print(sr)  | 
Output :
Now we will use Series.dt.ceil() function to ceil the datetime values in the given series object to Hourly frequency.
| # ceil to hourly frequency result =sr.dt.ceil(freq ='H')  Â# print the result print(result)  | 
Output :
As we can see in the output, the Series.dt.ceil() function has successfully ceiled the datetime values in the given series object to the specified frequency.
 
				 
					



