SymPy | Permutation.signature() in Python

Permutation.signature() : signature() is a sympy Python library function that returns the signature of the permutation needed to place the elements of the permutation in canonical order.
Signature = (-1)^<number of inversions>
Syntax : sympy.combinatorics.permutations.Permutation.signature()
Return : signature of the permutation.
Code #1 : signature() Example
# Python code explaining # SymPy.Permutation.signature() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from sympy.combinatorics.permutations.Permutation.signature() method # creating Permutation a = Permutation([[2, 0], [3, 1]]) b = Permutation([1, 3, 5, 4, 2, 0]) print ("Permutation a - signature form : ", a.signature()) print ("Permutation b - signature form : ", b.signature()) |
Output :
Permutation a – signature form : 1
Permutation b – signature form : -1
Code #2 : signature() Example
# Python code explaining # SymPy.Permutation.signature() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from # sympy.combinatorics.permutations.Permutation.signature() method # creating Permutation a = Permutation([[2, 4, 0], [3, 1, 2], [1, 5, 6]]) print ("Permutation a - signature form : ", a.signature()) |
Output :
Permutation a – signature form : 1



