Program to Find the Incenter of a Triangle

Given the vertices of a triangle and length of its sides. A circle is inscribed in a triangle. The task is to find the incenter of a triangle.
Examples: 
Input: A(2, 2), B(1, 1), C(3, 1)
Output: (2, 1.5)Input: A(3, 3), B(1, 2), C(2, 2)
Output: (2.5, 2.83)
Approach: 
 
- The center of the circle that touches the sides of a triangle is called its incenter.
 - Suppose the vertices of the triangle are A(x1, y1), B(x2, y2) and C(x3, y3).
 - Let the side AB = a, BC = b, AC = c then the coordinates of the in-center is given by the formula:
 
Below is the implementation of the above approach:
C++
// C++ program to find the// incenter of a triangle#include <bits/stdc++.h>using namespace std;// Driver codeint main(){    // coordinate of the vertices    float x1 = 2, x2 = 1, x3 = 3;    float y1 = 2, y2 = 1, y3 = 1;    float a = 2, b = 1, c = 1;    // Formula to calculate in-center    float x = (a * x1 + b *                   x2 + c * x3) / (a + b + c);    float y = (a * y1 + b *                   y2 + c * y3) / (a + b + c);    // System.out.print(setprecision(3));    cout << "Incenter = "         << "(" << x << ", " << y << ")";    return 0;}// This code is contributed by 29AjayKumar | 
Java
// Java program to find the// incenter of a triangleimport java.util.*;import java.lang.*;class GFG {    // Driver code    public static void main(String args[])    {        // coordinate of the vertices        float x1 = 2, x2 = 1, x3 = 3;        float y1 = 2, y2 = 1, y3 = 1;        float a = 2, b = 1, c = 1;        // Formula to calculate in-center        float x            = (a * x1 + b * x2 + c * x3) / (a + b + c);        float y            = (a * y1 + b * y2 + c * y3) / (a + b + c);        // System.out.print(setprecision(3));        System.out.println("Incenter= "                           + "(" + x + ", " + y + ")");    }} | 
Python3
# Python3 program to find the# incenter of a triangle# Driver code# coordinate of the verticesx1 = 2; x2 = 1; x3 = 3;y1 = 2; y2 = 1; y3 = 1;a = 2; b = 1; c = 1;# Formula to calculate in-centerx = (a * x1 + b * x2 + c * x3) / (a + b + c);y = (a * y1 + b * y2 + c * y3) / (a + b + c);# System.out.print(setprecision(3));print("Incenter = (", x, ",", y, ")");# This code is contributed# by Akanksha Rai | 
C#
// C# program to find the// incenter of a triangleusing System;class GFG{    // Driver code    public static void Main()    {        // coordinate of the vertices        float x1 = 2, x2 = 1, x3 = 3;        float y1 = 2, y2 = 1, y3 = 1;        float a = 2, b = 1, c = 1;        // Formula to calculate in-center        float x            = (a * x1 + b * x2 + c * x3) / (a + b + c);        float y            = (a * y1 + b * y2 + c * y3) / (a + b + c);        // System.out.print(setprecision(3));        Console.WriteLine("Incenter= "                        + "(" + x + ", " + y + ")");    }}// This code is contributed by vt_m. | 
Javascript
<script>      // JavaScript program to find the      // incenter of a triangle      // Driver code      // coordinate of the vertices      var x1 = 2,        x2 = 1,        x3 = 3;      var y1 = 2,        y2 = 1,        y3 = 1;      var a = 2,        b = 1,        c = 1;      // Formula to calculate in-center      var x = (a * x1 + b * x2 + c * x3) / (a + b + c);      var y = (a * y1 + b * y2 + c * y3) / (a + b + c);      document.write(        "Incenter = " + "(" + x.toFixed(1) + ", " + y.toFixed(1) + ")"      );    </script> | 
Output
Incenter = (2, 1.5)
Time Complexity: O(1), the code will run in a constant time.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
				
					



