Java Program to Represent Linear Equations in Matrix Form

Let’s look at the System of Linear Equation with the help of an example:
The input of coefficients and variables is taken into play for consideration.
- The scanner package should be imported into the program in order to use the object of the Scanner class to take the input from the user.
 - The array will be initialized to store the variables of the equations.
 - The coefficients of the variables will be taken from the user with the help of the object of the Scanner class.
 - The equations will then converted into the form of a matrix with the help of a loop.
 
Two examples are laid off:
- 3 variable linear equations in matrix form.
 - N variable linear equations in matrix form.
 
Illustration: Considering the most used practical linear equation used in mathematics, that is 3 variable linear equations.
Input: ax + by + cz = d
Output - 1 2 3 x = 10
     5 1 3 y = 12
      7 4 2 z = 20
Example 1: Java Program for 3 variable linear equations in matrix form.
Java
// Java Program to Represent Linear Equations in Matrix Form// Importing Scanner class// to take input from userimport java.util.Scanner;public class GFG {       // Mai driver method    public static void main(String args[])    {        // Display message for better readability        System.out.println(            "******** 3 variable linear equation ********");        // 3 variables of the linear equation        char[] variable = { 'x', 'y', 'z' };        // Creating Scanner class object        Scanner sc = new Scanner(System.in);        // Display message for asking user to enter input        System.out.println(            "Enter the coefficients of 3 variable");        System.out.println(            "Enter in the format shown below");        System.out.println("ax + by + cz = d");        // For 3*3 matrix or in other words        // Dealing with linear equations of 3 coefficients        // Input of coefficients from user        int[][] matrix = new int[3][3];        int[][] constt = new int[3][1];        // Outer loop for iterating rows        for (int i = 0; i < 3; i++) {            // Inner loop for iterating columns            for (int j = 0; j < 3; j++) {                // Reading values from usr and                // entering in the matrix form                matrix[i][j] = sc.nextInt();            }            // One row input is over by now            constt[i][0] = sc.nextInt();        }        // The linear equations in the form of matrix        // Display message        System.out.println(            "Matrix representation of above linear equations is: ");        // Outer loop for iterating rows        for (int i = 0; i < 3; i++) {            // Inner loop for iterating columns            for (int j = 0; j < 3; j++) {                // Printing matrix corresponding                // linear equation                System.out.print(" " + matrix[i][j]);            }            System.out.print("  " + variable[i]);            System.out.print("  =  " + constt[i][0]);            System.out.println();        }        // Close the stream and release the resources        sc.close();    }} | 
Output:
Now, getting it generic for any value of N: “n-variable linear equation”
Illustration:
Input: ax + by + cz + ... = d
Output: 1 2 3 x = 10
        5 1 3 y = 12
     7 4 2 z = 20
     ...
     ...
Example 2: Java Program for N variable linear equations in matrix form.
Java
import java.util.Scanner;public class Linear_Equations_n {    public static void main(String args[])    {        System.out.println(            "******** n variable linear equation ********");        // Initializing the variables        char[] variable            = { 'a', 'b', 'c', 'x', 'y', 'z', 'w' };        System.out.println("Enter the number of variables");        Scanner sc = new Scanner(System.in);        int num = sc.nextInt();        System.out.println(            "Enter the coefficients variable");        System.out.println(            "Enter in the format shown below");        System.out.println("ax + by + cz + ... = d");               // Input of coefficients from user        int[][] matrix = new int[num][num];        int[][] constt = new int[num][1];        for (int i = 0; i < num; i++) {            for (int j = 0; j < num; j++) {                matrix[i][j] = sc.nextInt();            }            constt[i][0] = sc.nextInt();        }        // Representation of linear equations in form of        // matrix        System.out.println(            "Matrix representation of above linear equations is: ");        for (int i = 0; i < num; i++) {            for (int j = 0; j < num; j++) {                System.out.print(" " + matrix[i][j]);            }            System.out.print("  " + variable[i]);            System.out.print("  =  " + constt[i][0]);            System.out.println();        }        sc.close();    }} | 
Output –
4 – variable linear equations
5 – variable linear equations
Time Complexity: O(N2)
Auxiliary Space: O(N2)
The extra space is used to store the elements in the matrix.
				
					


