Find the next fibonacci number

Given a fibonacci number N, the task is to find the next fibonacci number.
Examples:
Input: N = 5
Output: 8
8 is the next fibonacci number after 5
Input: N = 3
Output: 5
Approach: The ratio of two adjacent numbers in the Fibonacci series rapidly approaches ((1 + sqrt(5)) / 2). So if N is multiplied by ((1 + sqrt(5)) / 2) and round it, the resultant number will be the next fibonacci number.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include<bits/stdc++.h>using namespace std;// Function to return the next// fibonacci numberint nextFibonacci(int n){ double a = n * (1 + sqrt(5)) / 2.0; return round(a);}// Driver codeint main(){ int n = 5; cout << nextFibonacci(n);}// This code is contributed by mohit kumar 29 |
Java
// Java implementation of the approach class GFG{ // Function to return the next // fibonacci number static long nextFibonacci(int n) { double a = n * (1 + Math.sqrt(5)) / 2.0; return Math.round(a); } // Driver code public static void main (String[] args) { int n = 5; System.out.println(nextFibonacci(n)); }}// This code is contributed by AnkitRai01 |
Python3
# Python3 implementation of the approachfrom math import *# Function to return the next # fibonacci numberdef nextFibonacci(n): a = n*(1 + sqrt(5))/2.0 return round(a)# Driver coden = 5print(nextFibonacci(n)) |
C#
// C# implementation of the approachusing System;class GFG { // Function to return the next // fibonacci number static long nextFibonacci(int n) { double a = n * (1 + Math.Sqrt(5)) / 2.0; return (long)Math.Round(a); } // Driver code public static void Main(String[] args) { int n = 5; Console.WriteLine(nextFibonacci(n)); }}// This code is contributed by 29AjayKumar |
Javascript
<script>// Javascript implementation of the approach // Function to return the next // fibonacci number function nextFibonacci(n) { let a = n * (1 + Math.sqrt(5)) / 2.0; return Math.round(a); } // Driver code let n = 5; document.write(nextFibonacci(n)); // This code is contributed by Mayank Tyagi</script> |
Output:
8
Time Complexity: O(1)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



