Total number of Subsets of size at most K

Given a number N which is the size of the set and a number K, the task is to find the count of subsets, of the set of N elements, having at most K elements in it, i.e. the size of subset is less than or equal to K.
Examples:
Input: N = 3, K = 2
Output: 6
Subsets with 1 element in it = {1}, {2}, {3}
Subsets with 2 elements in it = {1, 2}, {1, 3}, {1, 2}
Since K = 2, therefore only the above subsets will be considered for length atmost K. Therefore the count is 6.
Input: N = 5, K = 2
Output: 15
Approach:
- Since the number of subsets of exactly K elements that can be made from N items is (NCK). Therefore for “at most”, the required count will be
- Inorder to calculate the value of NCK, Binomial Coefficient is used. Please refer this article to see how it works.
- So to get the required subsets for length atmost K, run a loop from 1 to K and add the NCi for each value of i.
Below is the implementation of the above approach:
C++
// C++ code to find total number of// Subsets of size at most K#include <bits/stdc++.h>using namespace std;// Function to compute the value// of Binomial Coefficient C(n, k)int binomialCoeff(int n, int k){ int C[n + 1][k + 1]; int i, j; // Calculate value of Binomial Coefficient // in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= min(i, k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously // stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k];}// Function to calculate sum of// nCj from j = 1 to kint count(int n, int k){ int sum = 0; for (int j = 1; j <= k; j++) { // Calling the nCr function // for each value of j sum = sum + binomialCoeff(n, j); } return sum;}// Driver codeint main(){ int n = 3, k = 2; cout << count(n, k) << endl; n = 5, k = 2; cout << count(n, k) << endl; return 0;} |
Java
// Java code to find total number of// Subsets of size at most Kimport java.lang.*;class GFG{// Function to compute the value// of Binomial Coefficient C(n, k)public static int binomialCoeff(int n, int k){ int[][] C = new int[n + 1][k + 1]; int i, j; // Calculate value of Binomial Coefficient // in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.min(i, k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously // stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k];}// Function to calculate sum of// nCj from j = 1 to kpublic static int count(int n, int k){ int sum = 0; for (int j = 1; j <= k; j++) { // Calling the nCr function // for each value of j sum = sum + binomialCoeff(n, j); } return sum;}// Driver codepublic static void main(String args[]){ GFG g = new GFG(); int n = 3, k = 2; System.out.print(count(n, k)); int n1 = 5, k1 = 2; System.out.print(count(n1, k1));}}// This code is contributed by SoumikMondal |
Python3
# Python code to find total number of# Subsets of size at most K# Function to compute the value# of Binomial Coefficient C(n, k)def binomialCoeff(n, k): C = [[0 for i in range(k + 1)] for j in range(n + 1)]; i, j = 0, 0; # Calculate value of Binomial Coefficient # in bottom up manner for i in range(n + 1): for j in range( min(i, k) + 1): # Base Cases if (j == 0 or j == i): C[i][j] = 1; # Calculate value using previously # stored values else: C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; return C[n][k];# Function to calculate sum of# nCj from j = 1 to kdef count(n, k): sum = 0; for j in range(1, k+1): # Calling the nCr function # for each value of j sum = sum + binomialCoeff(n, j); return sum;# Driver codeif __name__ == '__main__': n = 3; k = 2; print(count(n, k), end=""); n1 = 5; k1 = 2; print(count(n1, k1));# This code is contributed by 29AjayKumar |
C#
// C# code to find total number of// Subsets of size at most Kusing System;class GFG{ // Function to compute the value // of Binomial Coefficient C(n, k) public static int binomialCoeff(int n, int k) { int[,] C = new int[n + 1, k + 1]; int i, j; // Calculate value of Binomial Coefficient // in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.Min(i, k); j++) { // Base Cases if (j == 0 || j == i) C[i, j] = 1; // Calculate value using previously // stored values else C[i, j] = C[i - 1, j - 1] + C[i - 1, j]; } } return C[n, k]; } // Function to calculate sum of // nCj from j = 1 to k public static int count(int n, int k) { int sum = 0; for (int j = 1; j <= k; j++) { // Calling the nCr function // for each value of j sum = sum + binomialCoeff(n, j); } return sum; } // Driver code public static void Main() { int n = 3, k = 2; Console.Write(count(n, k)); int n1 = 5, k1 = 2; Console.Write(count(n1, k1)); }}// This code is contributed by AnkitRai01 |
Javascript
<script>// Javascript implementation of the// above approach// Function for the binomial coefficientfunction binomialCoeff(n, k){ var C = new Array(n + 1); // Loop to create 2D array using 1D array for (var i = 0; i < C.length; i++) { C[i] = new Array(k + 1); } var i, j; // Calculate value of Binomial Coefficient // in bottom up manner for (i = 0; i <= n; i++) { for (j = 0; j <= Math.min(i, k); j++) { // Base Cases if (j == 0 || j == i) C[i][j] = 1; // Calculate value using previously // stored values else C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; } } return C[n][k];} // Function to calculate sum of// nCj from j = 1 to kfunction count(n, k){ var sum = 0; for (var j = 1; j <= k; j++) { // Calling the nCr function // for each value of j sum = sum + binomialCoeff(n, j); } return sum;}// Driver codevar n = 3;var k = 2;document.write(count(n, k));var n = 5;var k = 2;document.write(count(n, k));// This code is contributed by ShubhamSingh10</script> |
Output
6 15
Time Complexity: O(n2 * k)
Auxiliary Space: O(n + k)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



