Smallest subarray containing minimum and maximum values

Given an array A of size N. The task is to find the length of smallest subarray which contains both maximum and minimum values.
Examples:
Input : A[] = {1, 5, 9, 7, 1, 9, 4}
Output : 2
subarray {1, 9} has both maximum and minimum value.
Input : A[] = {2, 2, 2, 2}
Output : 1
2 is both maximum and minimum here.
Approach: The idea is to use two-pointer technique here :
- Find the maximum and minimum values of the array.
- Traverse through the array and store the last occurrences of maximum and minimum values.
- If the of last occurrence of maximum is pos_max and minimum is pos_min, then the minimum value of abs(pos_min – pos_max) + 1 is our required answer.
Below is the implementation of the above approach:
C++
// C++ implementation of above approach#include <bits/stdc++.h>using namespace std;// Function to return length of// smallest subarray containing both// maximum and minimum valueint minSubarray(int A[], int n){ // find maximum and minimum // values in the array int minValue = *min_element(A, A + n); int maxValue = *max_element(A, A + n); int pos_min = -1, pos_max = -1, ans = INT_MAX; // iterate over the array and set answer // to smallest difference between position // of maximum and position of minimum value for (int i = 0; i < n; i++) { // last occurrence of minValue if (A[i] == minValue) pos_min = i; // last occurrence of maxValue if (A[i] == maxValue) pos_max = i; if (pos_max != -1 and pos_min != -1) ans = min(ans, abs(pos_min - pos_max) + 1); } return ans;}// Driver codeint main(){ int A[] = { 1, 5, 9, 7, 1, 9, 4 }; int n = sizeof(A) / sizeof(A[0]); cout << minSubarray(A, n); return 0;} |
Java
// Java implementation of above approachimport java.util.*;class GFG{// Function to return length of// smallest subarray containing both// maximum and minimum valuestatic int minSubarray(int A[], int n){ // find maximum and minimum // values in the array int minValue = A[0]; for(int i = 1; i < n; i++) { if(A[i] < minValue) minValue = A[i]; } int maxValue = A[0]; for(int i = 1; i < n; i++) { if(A[i] > maxValue) maxValue = A[i]; } int pos_min = -1, pos_max = -1, ans = Integer.MAX_VALUE; // iterate over the array and set answer // to smallest difference between position // of maximum and position of minimum value for (int i = 0; i < n; i++) { // last occurrence of minValue if (A[i] == minValue) pos_min = i; // last occurrence of maxValue if (A[i] == maxValue) pos_max = i; if (pos_max != -1 && pos_min != -1) ans = Math.min(ans, Math.abs(pos_min - pos_max) + 1); } return ans;}// Driver codepublic static void main(String args[]){ int A[] = { 1, 5, 9, 7, 1, 9, 4 }; int n = A.length; System.out.println(minSubarray(A, n));}}// This code is contributed by// Surendra_Gangwar |
Python3
# Python3 implementation of above approachimport sys# Function to return length of smallest # subarray containing both maximum and # minimum valuedef minSubarray(A, n): # find maximum and minimum # values in the array minValue = min(A) maxValue = max(A) pos_min, pos_max, ans = -1, -1, sys.maxsize # iterate over the array and set answer # to smallest difference between position # of maximum and position of minimum value for i in range(0, n): # last occurrence of minValue if A[i] == minValue: pos_min = i # last occurrence of maxValue if A[i] == maxValue: pos_max = i if pos_max != -1 and pos_min != -1 : ans = min(ans, abs(pos_min - pos_max) + 1) return ans# Driver codeA = [ 1, 5, 9, 7, 1, 9, 4 ]n = len(A)print(minSubarray(A, n))# This code is contributed# by Saurabh_Shukla |
C#
// C# implementation of above approachusing System;using System.Linq;public class GFG{ // Function to return length of// smallest subarray containing both// maximum and minimum valuestatic int minSubarray(int []A, int n){ // find maximum and minimum // values in the array int minValue = A.Min(); int maxValue = A.Max(); int pos_min = -1, pos_max = -1, ans = int.MaxValue; // iterate over the array and set answer // to smallest difference between position // of maximum and position of minimum value for (int i = 0; i < n; i++) { // last occurrence of minValue if (A[i] == minValue) pos_min = i; // last occurrence of maxValue if (A[i] == maxValue) pos_max = i; if (pos_max != -1 && pos_min != -1) ans = Math.Min(ans, Math.Abs(pos_min - pos_max) + 1); } return ans;}// Driver code static public void Main (){ int []A = { 1, 5, 9, 7, 1, 9, 4 }; int n = A.Length; Console.WriteLine(minSubarray(A, n)); }}// This code is contributed by anuj_67.. |
PHP
<?php// PHP implementation of above approach // Function to return length of // smallest subarray containing both // maximum and minimum value function minSubarray($A, $n) { // find maximum and minimum // values in the array $minValue = min($A); $maxValue = max($A); $pos_min = -1; $pos_max = -1; $ans = PHP_INT_MAX; // iterate over the array and set answer // to smallest difference between position // of maximum and position of minimum value for ($i = 0; $i < $n; $i++) { // last occurrence of minValue if ($A[$i] == $minValue) $pos_min = $i; // last occurrence of maxValue if ($A[$i] == $maxValue) $pos_max = $i; if ($pos_max != -1 and $pos_min != -1) $ans = min($ans, abs($pos_min - $pos_max) + 1); } return $ans; } // Driver code $A = array(1, 5, 9, 7, 1, 9, 4);$n = sizeof($A);echo minSubarray($A, $n); // This code is contributed by Ryuga?> |
Javascript
<script> // Javascript implementation of above approach // Function to return length of // smallest subarray containing both // maximum and minimum value function minSubarray(A, n) { // find maximum and minimum // values in the array let minValue = Number.MAX_VALUE; let maxValue = Number.MIN_VALUE; for (let i = 0; i < n; i++) { minValue = Math.min(minValue, A[i]); maxValue = Math.max(maxValue, A[i]); } let pos_min = -1, pos_max = -1, ans = Number.MAX_VALUE; // iterate over the array and set answer // to smallest difference between position // of maximum and position of minimum value for (let i = 0; i < n; i++) { // last occurrence of minValue if (A[i] == minValue) pos_min = i; // last occurrence of maxValue if (A[i] == maxValue) pos_max = i; if (pos_max != -1 && pos_min != -1) ans = Math.min(ans, Math.abs(pos_min - pos_max) + 1); } return ans; } let A = [ 1, 5, 9, 7, 1, 9, 4 ]; let n = A.length; document.write(minSubarray(A, n));</script> |
Output
2
Complexity Analysis:
- Time Complexity: O(n)
- Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



