Find the integral roots of a given Cubic equation

Given 5 integers say A, B, C, D, and E which represents the cubic equation , the task is to find the integral solution for this equation. If there doesn’t exist any integral solution then print “NA”.
Examples:
Input: A = 1, B = 0, C = 0, D = 0, E = 27
Output: 3
Input: A = 1, B = 0, C = 0, D = 0, E = 16
Output: NA
Approach: The idea is to use binary search. Below are the steps:
- Initialise the start and end variable as 0 & 105 respectively.
- Find the middle(say mid) value of start and end check if it satisfy the given equation or not.
- If current mid satisfy the given equation then print the mid value.
- Else if the value of f(x) is less than E then update start as mid + 1.
- Else Update end as mid – 1.
- If we can’t find any integral solution for the above equation then print “-1”.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to find the value at x of// the given equationlong long int check(int A, int B, int C, int D, long long int x){ long long int ans; // Find the value equation at x ans = (A * x * x * x + B * x * x + C * x + D); // Return the value of ans return ans;}// Function to find the integral// solution of the given equationvoid findSolution(int A, int B, int C, int D, int E){ // Initialise start and end int start = 0, end = 100000; long long int mid, ans; // Implement Binary Search while (start <= end) { // Find mid mid = start + (end - start) / 2; // Find the value of f(x) using // current mid ans = check(A, B, C, D, mid); // Check if current mid satisfy // the equation if (ans == E) { // Print mid and return cout << mid << endl; return; } if (ans < E) start = mid + 1; else end = mid - 1; } // Print "NA" if not found // any integral solution cout << "NA";}// Driver Codeint main(){ int A = 1, B = 0, C = 0; int D = 0, E = 27; // Function Call findSolution(A, B, C, D, E);} |
Java
// Java program for the above approachimport java.util.*;class GFG{// Function to find the value at x of// the given equationstatic long check(int A, int B, int C, int D, long x){ long ans; // Find the value equation at x ans = (A * x * x * x + B * x * x + C * x + D); // Return the value of ans return ans;}// Function to find the integral// solution of the given equationstatic void findSolution(int A, int B, int C, int D, int E){ // Initialise start and end long start = 0, end = 100000; long mid, ans; // Implement Binary Search while (start <= end) { // Find mid mid = start + (end - start) / 2; // Find the value of f(x) using // current mid ans = check(A, B, C, D, mid); // Check if current mid satisfy // the equation if (ans == E) { // Print mid and return System.out.println(mid); return; } if (ans < E) start = mid + 1; else end = mid - 1; } // Print "NA" if not found // any integral solution System.out.println("NA");}// Driver Codepublic static void main(String args[]){ int A = 1, B = 0, C = 0; int D = 0, E = 27; // Function Call findSolution(A, B, C, D, E);}}// This code is contributed by Code_Mech |
Python3
# Python3 program for the above approach# Function to find the value at x of# the given equationdef check(A, B, C, D, x) : ans = 0; # Find the value equation at x ans = (A * x * x * x + B * x * x + C * x + D); # Return the value of ans return ans;# Function to find the integral# solution of the given equationdef findSolution(A, B, C, D, E) : # Initialise start and end start = 0; end = 100000; mid = 0; ans = 0; # Implement Binary Search while (start <= end) : # Find mid mid = start + (end - start) // 2; # Find the value of f(x) using # current mid ans = check(A, B, C, D, mid); # Check if current mid satisfy # the equation if (ans == E) : # Print mid and return print(mid); return; if (ans < E) : start = mid + 1; else : end = mid - 1; # Print "NA" if not found # any integral solution print("NA");# Driver Codeif __name__ == "__main__" : A = 1; B = 0; C = 0; D = 0; E = 27; # Function Call findSolution(A, B, C, D, E); # This code is contributed by AnkitRai01 |
C#
// C# program for the above approachusing System;class GFG{// Function to find the value at x of// the given equationstatic long check(int A, int B, int C, int D, long x){ long ans; // Find the value equation at x ans = (A * x * x * x + B * x * x + C * x + D); // Return the value of ans return ans;}// Function to find the integral// solution of the given equationstatic void findSolution(int A, int B, int C, int D, int E){ // Initialise start and end long start = 0, end = 100000; long mid, ans; // Implement Binary Search while (start <= end) { // Find mid mid = start + (end - start) / 2; // Find the value of f(x) using // current mid ans = check(A, B, C, D, mid); // Check if current mid satisfy // the equation if (ans == E) { // Print mid and return Console.WriteLine(mid); return; } if (ans < E) start = mid + 1; else end = mid - 1; } // Print "NA" if not found // any integral solution Console.Write("NA");}// Driver Codepublic static void Main(){ int A = 1, B = 0, C = 0; int D = 0, E = 27; // Function Call findSolution(A, B, C, D, E);}}// This code is contributed by Code_Mech |
Javascript
<script>// Javascript program for the above approach// Function to find the value at x of// the given equationfunction check(A, B, C, D, x){ var ans; // Find the value equation at x ans = (A * x * x * x + B * x * x + C * x + D); // Return the value of ans return ans;}// Function to find the integral// solution of the given equationfunction findSolution(A, B, C, D, E){ // Initialise start and end var start = 0, end = 100000; var mid, ans; // Implement Binary Search while (start <= end) { // Find mid mid = parseInt(start + (end - start) / 2); // Find the value of f(x) using // current mid ans = check(A, B, C, D, mid); // Check if current mid satisfy // the equation if (ans == E) { // Print mid and return document.write(mid); return; } if (ans < E) start = mid + 1; else end = mid - 1; } // Print "NA" if not found // any integral solution document.write("NA");}// Driver Codevar A = 1, B = 0, C = 0;var D = 0, E = 27;// Function CallfindSolution(A, B, C, D, E);// This code is contributed by Ankita saini</script> |
Output:
3
Time Complexity: O(log N)
Auxiliary Space: O(1) as constant space for variables is being used
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



