Count maximum non-overlapping subarrays with given sum

Given an array arr[] consisting of N integers and an integer target, the task is to find the maximum number of non-empty non-overlapping subarrays such that the sum of array elements in each subarray is equal to the target.
Examples:
Input: arr[] = {2, -1, 4, 3, 6, 4, 5, 1}, target = 6
Output: 3
Explanation:
Subarrays {-1, 4, 3}, {6} and {5, 1} have sum equal to target(= 6).Input: arr[] = {2, 2, 2, 2, 2}, target = 4
Output: 2
Approach: To obtain the smallest non-overlapping subarrays with the sum target, the target is to use the Prefix Sum technique. Follow the steps below to solve the problem:
- Store all the sums calculated so far in a Map mp with key as the sum of the prefix till that index and value as the ending index of the subarray with that sum.
- If the prefix-sum till index i, say sum, is equal to target, check if sum – target exists in the Map or not.
- If sum – target exists in Map and mp[sum – target] = idx, it means that the subarray from [idx + 1, i] has sum equal to target.
- Now for non-overlapping subarrays, maintain an additional variable availIdx(initially set to -1), and take the subarray from [idx + 1, i] only when mp[sum – target] ? availIdx.
- Whenever such a subarray is found, increment the answer and change the value of availIdx to the current index.
- Also, for non-overlapping subarrays, it is always beneficial to greedily take subarrays as small as possible. So, for every prefix-sum found, update its index in the Map, even if it already exists.
- Print the value of count after completing the above steps.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;// Function to count maximum number// of non-overlapping subarrays with// sum equals to the targetint maximumSubarrays(int arr[], int N, int target){ // Stores the final count int ans = 0; // Next subarray should start // from index >= availIdx int availIdx = -1; // Tracks the prefix sum int cur_sum = 0; // Map to store the prefix sum // for respective indices unordered_map<int, int> mp; mp[0] = -1; for (int i = 0; i < N; i++) { cur_sum += arr[i]; // Check if cur_sum - target is // present in the array or not if (mp.find(cur_sum - target) != mp.end() && mp[cur_sum - target] >= availIdx) { ans++; availIdx = i; } // Update the index of // current prefix sum mp[cur_sum] = i; } // Return the count of subarrays return ans;}// Driver Codeint main(){ // Given array arr[] int arr[] = { 2, -1, 4, 3, 6, 4, 5, 1 }; int N = sizeof(arr) / sizeof(arr[0]); // Given sum target int target = 6; // Function Call cout << maximumSubarrays(arr, N, target); return 0;} |
Java
// Java program for the above approachimport java.util.*;class GFG{// Function to count maximum number// of non-overlapping subarrays with// sum equals to the targetstatic int maximumSubarrays(int arr[], int N, int target){ // Stores the final count int ans = 0; // Next subarray should start // from index >= availIdx int availIdx = -1; // Tracks the prefix sum int cur_sum = 0; // Map to store the prefix sum // for respective indices HashMap<Integer, Integer> mp = new HashMap<Integer, Integer>(); mp.put(0, 1); for(int i = 0; i < N; i++) { cur_sum += arr[i]; // Check if cur_sum - target is // present in the array or not if (mp.containsKey(cur_sum - target) && mp.get(cur_sum - target) >= availIdx) { ans++; availIdx = i; } // Update the index of // current prefix sum mp.put(cur_sum, i); } // Return the count of subarrays return ans;}// Driver Codepublic static void main(String[] args){ // Given array arr[] int arr[] = { 2, -1, 4, 3, 6, 4, 5, 1 }; int N = arr.length; // Given sum target int target = 6; // Function call System.out.print(maximumSubarrays(arr, N, target));}}// This code is contributed by Amit Katiyar |
Python3
# Python3 program for the above approach# Function to count maximum number# of non-overlapping subarrays with# sum equals to the targetdef maximumSubarrays(arr, N, target): # Stores the final count ans = 0 # Next subarray should start # from index >= availIdx availIdx = -1 # Tracks the prefix sum cur_sum = 0 # Map to store the prefix sum # for respective indices mp = {} mp[0] = -1 for i in range(N): cur_sum += arr[i] # Check if cur_sum - target is # present in the array or not if ((cur_sum - target) in mp and mp[cur_sum - target] >= availIdx): ans += 1 availIdx = i # Update the index of # current prefix sum mp[cur_sum] = i # Return the count of subarrays return ans# Driver Codeif __name__ == '__main__': # Given array arr[] arr = [ 2, -1, 4, 3, 6, 4, 5, 1 ] N = len(arr) # Given sum target target = 6 # Function call print(maximumSubarrays(arr, N, target))# This code is contributed by mohit kumar 29 |
C#
// C# program for the above approachusing System;using System.Collections.Generic;class GFG{// Function to count maximum number// of non-overlapping subarrays with// sum equals to the targetstatic int maximumSubarrays(int []arr, int N, int target){ // Stores the readonly count int ans = 0; // Next subarray should start // from index >= availIdx int availIdx = -1; // Tracks the prefix sum int cur_sum = 0; // Map to store the prefix sum // for respective indices Dictionary<int, int> mp = new Dictionary<int, int>(); mp.Add(0, 1); for(int i = 0; i < N; i++) { cur_sum += arr[i]; // Check if cur_sum - target is // present in the array or not if (mp.ContainsKey(cur_sum - target) && mp[cur_sum - target] >= availIdx) { ans++; availIdx = i; } // Update the index of // current prefix sum if(mp.ContainsKey(cur_sum)) mp[cur_sum] = i; else mp.Add(cur_sum, i); } // Return the count of subarrays return ans;}// Driver Codepublic static void Main(String[] args){ // Given array []arr int []arr = {2, -1, 4, 3, 6, 4, 5, 1}; int N = arr.Length; // Given sum target int target = 6; // Function call Console.Write(maximumSubarrays(arr, N, target));}}// This code is contributed by Princi Singh |
Javascript
<script>// JavaScript program for the above approach// Function to count maximum number// of non-overlapping subarrays with// sum equals to the targetfunction maximumSubarrays(arr, N, target){ // Stores the final count var ans = 0; // Next subarray should start // from index >= availIdx var availIdx = -1; // Tracks the prefix sum var cur_sum = 0; // Map to store the prefix sum // for respective indices var mp = new Map(); mp.set(0, 1); for (var i = 0; i < N; i++) { cur_sum += arr[i]; // Check if cur_sum - target is // present in the array or not if (mp.has(cur_sum - target) && mp.get(cur_sum - target) >= availIdx) { ans++; availIdx = i; } // Update the index of // current prefix sum mp.set(cur_sum , i); } // Return the count of subarrays return ans;}// Driver Code// Given array arr[]var arr = [2, -1, 4, 3, 6, 4, 5, 1];var N = arr.length;// Given sum targetvar target = 6;// Function Calldocument.write( maximumSubarrays(arr, N, target));</script> |
Output:
3
Time Complexity: O(N)
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



