Minimum distance to the corner of a grid from source

Given a binary grid of order r * c and an initial position. The task is to find the minimum distance from the source to get to the any corner of the grid. A move can be made to a cell grid[i][j] only if grid[i][j] = 0 and only left, right, up and down movements are permitted. If no valid path exists then print -1.
Examples: 
 

Input: i = 1, j = 1, grid[][] = {{0, 0, 1}, {0, 0, 0}, {1, 1, 1}} 
Output:
(1, 1) -> (1, 0) -> (0, 0)
 

Input: i = 0, j = 0, grid[][] = {{0, 1}, {1, 1}} 
Output:
Source is already a corner of the grid. 
 

 

Approach: 
 

  • If source is already any of the corner then print 0.
  • Start traversing the grid starting with source using BFS as : 
    • Insert cell position in queue.
    • Pop element from queue and mark it visited.
    • For each valid move adjacent to popped one, insert the cell position into queue.
    • On each move, update the minimum distance of the cell from initial position.
  • After the completion of the BFS, find the minimum distance from source to every corner.
  • Print the minimum among these in the end.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define row 5
#define col 5
 
// Global variables for grid, minDistance and visited array
int minDistance[row + 1][col + 1], visited[row + 1][col + 1];
 
// Queue for BFS
queue<pair<int, int> > que;
 
// Function to find whether the move is valid or not
bool isValid(int grid[][col], int i, int j)
{
    if (i < 0 || j < 0
        || j >= col || i >= row
        || grid[i][j] || visited[i][j])
        return false;
 
    return true;
}
 
// Function to return the minimum distance
// from source to the end of the grid
int minDistance(int grid[][col],
                           int sourceRow, int sourceCol)
{
    // If source is one of the destinations
    if ((sourceCol == 0 && sourceRow == 0)
        || (sourceCol == col - 1 && sourceRow == 0)
        || (sourceCol == 0 && sourceRow == row - 1)
        || (sourceCol == col - 1 && sourceRow == row - 1))
        return 0;
 
    // Set minimum value
    int minFromSource = row * col;
 
    // Precalculate minDistance of each grid with R * C
    for (int i = 0; i < row; i++)
        for (int j = 0; j < col; j++)
            minDistance[i][j] = row * col;
 
    // Insert source position in queue
    que.push(make_pair(sourceRow, sourceCol));
 
    // Update minimum distance to visit source
    minDistance[sourceRow][sourceCol] = 0;
 
    // Set source to visited
    visited[sourceRow][sourceCol] = 1;
 
    // BFS approach for calculating the minDistance
    // of each cell from source
    while (!que.empty()) {
 
        // Iterate over all four cells adjacent
        // to current cell
        pair<int, int> cell = que.front();
 
        // Initialize position of current cell
        int cellRow = cell.first;
        int cellCol = cell.second;
 
        // Cell below the current cell
        if (isValid(grid, cellRow + 1, cellCol)) {
 
            // Push new cell to the queue
            que.push(make_pair(cellRow + 1, cellCol));
 
            // Update one of its neighbor's distance
            minDistance[cellRow + 1][cellCol]
                = min(minDistance[cellRow + 1][cellCol],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow + 1][cellCol] = 1;
        }
 
        // Above the current cell
        if (isValid(grid, cellRow - 1, cellCol)) {
            que.push(make_pair(cellRow - 1, cellCol));
            minDistance[cellRow - 1][cellCol]
                = min(minDistance[cellRow - 1][cellCol],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow - 1][cellCol] = 1;
        }
 
        // Right cell
        if (isValid(grid, cellRow, cellCol + 1)) {
            que.push(make_pair(cellRow, cellCol + 1));
            minDistance[cellRow][cellCol + 1]
                = min(minDistance[cellRow][cellCol + 1],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol + 1] = 1;
        }
 
        // Left cell
        if (isValid(grid, cellRow, cellCol - 1)) {
            que.push(make_pair(cellRow, cellCol - 1));
            minDistance[cellRow][cellCol - 1]
                = min(minDistance[cellRow][cellCol - 1],
                      minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol - 1] = 1;
        }
 
        // Pop the visited cell
        que.pop();
    }
 
    int i;
 
    // Minimum distance to the corner
    // of the first row, first column
    minFromSource = min(minFromSource,
                        minDistance[0][0]);
 
    // Minimum distance to the corner
    // of the last row, first column
    minFromSource = min(minFromSource,
                        minDistance[row - 1][0]);
 
    // Minimum distance to the corner
    // of the last row, last column
    minFromSource = min(minFromSource,
                        minDistance[row - 1][col - 1]);
 
    // Minimum distance to the corner
    // of the first row, last column
    minFromSource = min(minFromSource,
                        minDistance[0][col - 1]);
 
    // If no path exists
    if (minFromSource == row * col)
        return -1;
 
    // Return the minimum distance
    return minFromSource;
}
 
// Driver code
int main()
{
    int sourceRow = 3, sourceCol = 3;
    int grid[row][col] = { 1, 1, 1, 0, 0,
                           0, 0, 1, 0, 1,
                           0, 0, 1, 0, 1,
                           1, 0, 0, 0, 1,
                           1, 1, 0, 1, 0 };
 
    cout << minDistance(grid, sourceRow, sourceCol);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
class GFG
{
     
// Pair class
static class Pair
{
    int first,second;
    Pair(int a, int b)
    {
        first = a;
        second = b;
    }
}
     
static int row = 5;
static int col = 5;
 
// Global variables for grid, minDistance and visited array
static int minDistance[][] =
            new int[row + 1][col + 1],
            visited[][] = new int[row + 1][col + 1];
 
// Queue for BFS
static Queue<Pair > que = new LinkedList<>();
 
// Function to find whether the move is valid or not
static boolean isValid(int grid[][], int i, int j)
{
    if (i < 0 || j < 0
        || j >= col || i >= row
        || grid[i][j] != 0 || visited[i][j] != 0)
        return false;
 
    return true;
}
 
// Function to return the minimum distance
// from source to the end of the grid
static int minDistance(int grid[][],
                        int sourceRow, int sourceCol)
{
    // If source is one of the destinations
    if ((sourceCol == 0 && sourceRow == 0)
        || (sourceCol == col - 1 && sourceRow == 0)
        || (sourceCol == 0 && sourceRow == row - 1)
        || (sourceCol == col - 1 && sourceRow == row - 1))
        return 0;
 
    // Set minimum value
    int minFromSource = row * col;
 
    // Precalculate minDistance of each grid with R * C
    for (int i = 0; i < row; i++)
        for (int j = 0; j < col; j++)
            minDistance[i][j] = row * col;
 
    // Insert source position in queue
    que.add(new Pair(sourceRow, sourceCol));
 
    // Update minimum distance to visit source
    minDistance[sourceRow][sourceCol] = 0;
 
    // Set source to visited
    visited[sourceRow][sourceCol] = 1;
 
    // BFS approach for calculating the minDistance
    // of each cell from source
    while (que.size() > 0)
    {
 
        // Iterate over all four cells adjacent
        // to current cell
        Pair cell = que.peek();
 
        // Initialize position of current cell
        int cellRow = cell.first;
        int cellCol = cell.second;
 
        // Cell below the current cell
        if (isValid(grid, cellRow + 1, cellCol))
        {
 
            // add new cell to the queue
            que.add(new Pair(cellRow + 1, cellCol));
 
            // Update one of its neighbor's distance
            minDistance[cellRow + 1][cellCol]
                = Math.min(minDistance[cellRow + 1][cellCol],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow + 1][cellCol] = 1;
        }
 
        // Above the current cell
        if (isValid(grid, cellRow - 1, cellCol))
        {
            que.add(new Pair(cellRow - 1, cellCol));
            minDistance[cellRow - 1][cellCol]
                = Math.min(minDistance[cellRow - 1][cellCol],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow - 1][cellCol] = 1;
        }
 
        // Right cell
        if (isValid(grid, cellRow, cellCol + 1))
        {
            que.add(new Pair(cellRow, cellCol + 1));
            minDistance[cellRow][cellCol + 1]
                = Math.min(minDistance[cellRow][cellCol + 1],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol + 1] = 1;
        }
 
        // Left cell
        if (isValid(grid, cellRow, cellCol - 1))
        {
            que.add(new Pair(cellRow, cellCol - 1));
            minDistance[cellRow][cellCol - 1]
                = Math.min(minDistance[cellRow][cellCol - 1],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol - 1] = 1;
        }
 
        // remove the visited cell
        que.remove();
    }
 
    int i;
 
    // Minimum distance to the corner
    // of the first row, first column
    minFromSource = Math.min(minFromSource,
                        minDistance[0][0]);
 
    // Minimum distance to the corner
    // of the last row, first column
    minFromSource = Math.min(minFromSource,
                        minDistance[row - 1][0]);
 
    // Minimum distance to the corner
    // of the last row, last column
    minFromSource = Math.min(minFromSource,
                        minDistance[row - 1][col - 1]);
 
    // Minimum distance to the corner
    // of the first row, last column
    minFromSource = Math.min(minFromSource,
                        minDistance[0][col - 1]);
 
    // If no path exists
    if (minFromSource == row * col)
        return -1;
 
    // Return the minimum distance
    return minFromSource;
}
 
 
// Driver code
public static void main(String args[])
{
    int sourceRow = 3, sourceCol = 3;
    int grid[][] = { {1, 1, 1, 0, 0},
                    {0, 0, 1, 0, 1},
                    {0, 0, 1, 0, 1},
                    {1, 0, 0, 0, 1},
                    {1, 1, 0, 1, 0} };
 
    System.out.println(minDistance(grid, sourceRow, sourceCol));
}
}
 
// This code is contributed by Arnab Kundu


Python3




# Python 3 implementation of the approach
 
row = 5
col = 5
 
# Global variables for grid, minDistance and visited array
minDistance = [[0 for i in range(col+1)] for j in range(row+1)]
visited = [[0 for i in range(col+1)]for j in range(row+1)]
 
# Queue for BFS
que = [[0,0]]
 
# Function to find whether the move is valid or not
def isValid(grid,i,j):
    if (i < 0 or j < 0 or j >= col or
        i >= row or grid[i][j] or visited[i][j]):
        return False
    return True
 
# Function to return the minimum distance
# from source to the end of the grid
def minDistance1(grid,sourceRow,sourceCol):
    # If source is one of the destinations
    if ((sourceCol == 0 and sourceRow == 0) or
        (sourceCol == col - 1 and sourceRow == 0) or
        (sourceCol == 0 or sourceRow == row - 1) or
        (sourceCol == col - 1 and sourceRow == row - 1)):
        return 0
 
    # Set minimum value
    minFromSource = row * col
 
    # Precalculate minDistance of each grid with R * C
    for i in range(row):
        for j in range(col):
            minDistance[i][j] = row * col
 
    # Insert source position in queue
    que.append([sourceRow, sourceCol])
 
    # Update minimum distance to visit source
    minDistance[sourceRow][sourceCol] = 0
 
    # Set source to visited
    visited[sourceRow][sourceCol] = 1
 
    # BFS approach for calculating the minDistance
    # of each cell from source
    while (len(que)!=0):
        # Iterate over all four cells adjacent
        # to current cell
        cell = que[0]
 
        # Initialize position of current cell
        cellRow = cell[0]
        cellCol = cell[1]
 
        # Cell below the current cell
        if (isValid(grid, cellRow + 1, cellCol)):
            # Push new cell to the queue
            que.append([cellRow + 1, cellCol])
 
            # Update one of its neighbor's distance
            minDistance[cellRow + 1][cellCol] = min(minDistance[cellRow + 1][cellCol],
                                                minDistance[cellRow][cellCol] + 1)
            visited[cellRow + 1][cellCol] = 1
 
        # Above the current cell
        if (isValid(grid, cellRow - 1, cellCol)):
            que.append([cellRow - 1, cellCol])
            minDistance[cellRow - 1][cellCol] = min(minDistance[cellRow - 1][cellCol],
                                                    minDistance[cellRow][cellCol] + 1)
            visited[cellRow - 1][cellCol] = 1
 
        # Right cell
        if (isValid(grid, cellRow, cellCol + 1)):
            que.append([cellRow, cellCol + 1])
            minDistance[cellRow][cellCol + 1] = min(minDistance[cellRow][cellCol + 1],
                                                    minDistance[cellRow][cellCol] + 1)
            visited[cellRow][cellCol + 1] = 1
 
        # Left cell
        if (isValid(grid, cellRow, cellCol - 1)):
            que.append([cellRow, cellCol - 1])
            minDistance[cellRow][cellCol - 1]= min(minDistance[cellRow][cellCol - 1],
                                                minDistance[cellRow][cellCol] + 1)
            visited[cellRow][cellCol - 1] = 1
 
        # Pop the visited cell
        que.remove(que[0])
 
    # Minimum distance to the corner
    # of the first row, first column
    minFromSource = min(minFromSource, minDistance[0][0])
 
    # Minimum distance to the corner
    # of the last row, first column
    minFromSource = min(minFromSource, minDistance[row - 1][0])
 
    # Minimum distance to the corner
    # of the last row, last column
    minFromSource = min(minFromSource,minDistance[row - 1][col - 1])
 
    # Minimum distance to the corner
    # of the first row, last column
    minFromSource = min(minFromSource, minDistance[0][col - 1])
 
    # If no path exists
    if (minFromSource == row * col):
        return -1
 
    # Return the minimum distance
    return minFromSource
 
# Driver code
if __name__ == '__main__':
    sourceRow = 3
    sourceCol = 3
    grid = [[1, 1, 1, 0, 0],
            [0, 0, 1, 0, 1],
            [0, 0, 1, 0, 1],
            [1, 0, 0, 0, 1],
            [1, 1, 0, 1, 0]]
 
    print(minDistance1(grid, sourceRow, sourceCol))
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# implementation of above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG {
    // Global variables for grid, minDistance and visited
    // array
    static class Globals {
        // global int
        public static int row = 5;
        public static int col = 5;
 
        // Global variables for grid, minDistance and
        // visited array
        public static int[, ] minDistance
            = new int[row + 1, col + 1];
        public static int[, ] visited
            = new int[row + 1, col + 1];
 
        // Queue for BFS
        public static Queue<KeyValuePair<int, int> > que
            = new Queue<KeyValuePair<int, int> >();
    }
 
 
    // Function to find whether the move is valid or not
    static bool isValid(int[, ] grid, int i, int j)
    {
        if (i < 0 || j < 0 || j >= Globals.col
            || i >= Globals.row || grid[i, j] != 0
            || Globals.visited[i, j] != 0)
            return false;
 
        return true;
    }
 
    // Function to return the minimum distance
    // from source to the end of the grid
    static int minDistance1(int[, ] grid, int sourceRow,
                            int sourceCol)
    {
        // If source is one of the destinations
        if ((sourceCol == 0 && sourceRow == 0)
            || (sourceCol == Globals.col - 1
                && sourceRow == 0)
            || (sourceCol == 0
                && sourceRow == Globals.row - 1)
            || (sourceCol == Globals.col - 1
                && sourceRow == Globals.row - 1))
            return 0;
 
        // Set minimum value
        int minFromSource = Globals.row * Globals.col;
 
        // Precalculate minDistance of each grid with R * C
        for (int i = 0; i < Globals.row; i++)
            for (int j = 0; j < Globals.col; j++)
                Globals.minDistance[i, j]
                    = Globals.row * Globals.col;
 
        // Insert source position in queue
        Globals.que.Enqueue(new KeyValuePair<int, int>(
            sourceRow, sourceCol));
 
        // Update minimum distance to visit source
        Globals.minDistance[sourceRow, sourceCol] = 0;
 
        // Set source to visited
        Globals.visited[sourceRow, sourceCol] = 1;
 
        // BFS approach for calculating the minDistance
        // of each cell from source
        while (Globals.que.Count > 0) {
 
            // Iterate over all four cells adjacent
            // to current cell
            KeyValuePair<int, int> cell
                = Globals.que.Dequeue();
 
            // Initialize position of current cell
            int cellRow = cell.Key;
            int cellCol = cell.Value;
 
            // Cell below the current cell
            if (isValid(grid, cellRow + 1, cellCol)) {
 
                // Push new cell to the queue
                Globals.que.Enqueue(
                    new KeyValuePair<int, int>(cellRow + 1,
                                               cellCol));
 
                // Update one of its neighbor's distance
                Globals.minDistance[cellRow + 1, cellCol]
                    = Math.Min(
                        Globals.minDistance[cellRow + 1,
                                            cellCol],
                        Globals.minDistance[cellRow,
                                            cellCol]
                            + 1);
                Globals.visited[cellRow + 1, cellCol] = 1;
            }
 
            // Above the current cell
            if (isValid(grid, cellRow - 1, cellCol)) {
                Globals.que.Enqueue(
                    new KeyValuePair<int, int>(cellRow - 1,
                                               cellCol));
                Globals.minDistance[cellRow - 1, cellCol]
                    = Math.Min(
                        Globals.minDistance[cellRow - 1,
                                            cellCol],
                        Globals.minDistance[cellRow,
                                            cellCol]
                            + 1);
                Globals.visited[cellRow - 1, cellCol] = 1;
            }
 
            // Right cell
            if (isValid(grid, cellRow, cellCol + 1)) {
                Globals.que.Enqueue(
                    new KeyValuePair<int, int>(
                        cellRow, cellCol + 1));
                Globals.minDistance[cellRow, cellCol + 1]
                    = Math.Min(
                        Globals.minDistance[cellRow,
                                            cellCol + 1],
                        Globals.minDistance[cellRow,
                                            cellCol]
                            + 1);
                Globals.visited[cellRow, cellCol + 1] = 1;
            }
 
            // Left cell
            if (isValid(grid, cellRow, cellCol - 1)) {
                Globals.que.Enqueue(
                    new KeyValuePair<int, int>(
                        cellRow, cellCol - 1));
                Globals.minDistance[cellRow, cellCol - 1]
                    = Math.Min(
                        Globals.minDistance[cellRow,
                                            cellCol - 1],
                        Globals.minDistance[cellRow,
                                            cellCol]
                            + 1);
                Globals.visited[cellRow, cellCol - 1] = 1;
            }
        }
 
        // Minimum distance to the corner
        // of the first row, first column
        minFromSource = Math.Min(minFromSource,
                                 Globals.minDistance[0, 0]);
 
        // Minimum distance to the corner
        // of the last row, first column
        minFromSource = Math.Min(
            minFromSource,
            Globals.minDistance[Globals.row - 1, 0]);
 
        // Minimum distance to the corner
        // of the last row, last column
        minFromSource = Math.Min(
            minFromSource,
            Globals.minDistance[Globals.row - 1,
                                Globals.col - 1]);
 
        // Minimum distance to the corner
        // of the first row, last column
        minFromSource = Math.Min(
            minFromSource,
            Globals.minDistance[0, Globals.col - 1]);
 
        // If no path exists
        if (minFromSource == Globals.row * Globals.col)
            return -1;
 
        // Return the minimum distance
        return minFromSource;
    }
 
    // Driver Code
    static void Main()
    {
        int sourceRow = 3, sourceCol = 3;
        int[, ] grid = { { 1, 1, 1, 0, 0 },
                         { 0, 0, 1, 0, 1 },
                         { 0, 0, 1, 0, 1 },
                         { 1, 0, 0, 0, 1 },
                         { 1, 1, 0, 1, 0 } };
 
        Console.WriteLine(
            minDistance1(grid, sourceRow, sourceCol));
    }
}
 
// The code is contributed by Gautam goel (gautamgoel962)


Javascript




<script>
// Javascript implementation of the approach
 
// Pair class
class Pair
{
    constructor(a, b)
    {
        this.first = a;
        this.second = b;
    }
}
 
let row = 5;
let col = 5;
 
// Global variables for grid, minDistance and visited array
let minDistance = new Array(row + 1);
let visited = new Array(row + 1);
for(let i = 0; i < row + 1; i++)
{
    minDistance[i] = new Array(col+1);
    visited[i] = new Array(col+1);
    for(let j = 0; j < col + 1; j++)
    {
        minDistance[i][j] = 0;
        visited[i][j] = 0;
    }
     
     
}
 
// Queue for BFS
let que = [];
 
// Function to find whether the move is valid or not
function isValid(grid,i,j)
{
    if (i < 0 || j < 0
        || j >= col || i >= row
        || grid[i][j] != 0 || visited[i][j] != 0)
        return false;
   
    return true;
}
 
// Function to return the minimum distance
// from source to the end of the grid
function _minDistance(grid,sourceRow,sourceCol)
{
    // If source is one of the destinations
    if ((sourceCol == 0 && sourceRow == 0)
        || (sourceCol == col - 1 && sourceRow == 0)
        || (sourceCol == 0 && sourceRow == row - 1)
        || (sourceCol == col - 1 && sourceRow == row - 1))
        return 0;
   
    // Set minimum value
    let minFromSource = row * col;
   
    // Precalculate minDistance of each grid with R * C
    for (let i = 0; i < row; i++)
        for (let j = 0; j < col; j++)
            minDistance[i][j] = row * col;
   
    // Insert source position in queue
    que.push(new Pair(sourceRow, sourceCol));
   
    // Update minimum distance to visit source
    minDistance[sourceRow][sourceCol] = 0;
   
    // Set source to visited
    visited[sourceRow][sourceCol] = 1;
   
    // BFS approach for calculating the minDistance
    // of each cell from source
    while (que.length > 0)
    {
   
        // Iterate over all four cells adjacent
        // to current cell
        let cell = que[0];
   
        // Initialize position of current cell
        let cellRow = cell.first;
        let cellCol = cell.second;
   
        // Cell below the current cell
        if (isValid(grid, cellRow + 1, cellCol))
        {
   
            // add new cell to the queue
            que.push(new Pair(cellRow + 1, cellCol));
   
            // Update one of its neighbor's distance
            minDistance[cellRow + 1][cellCol]
                = Math.min(minDistance[cellRow + 1][cellCol],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow + 1][cellCol] = 1;
        }
   
        // Above the current cell
        if (isValid(grid, cellRow - 1, cellCol))
        {
            que.push(new Pair(cellRow - 1, cellCol));
            minDistance[cellRow - 1][cellCol]
                = Math.min(minDistance[cellRow - 1][cellCol],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow - 1][cellCol] = 1;
        }
   
        // Right cell
        if (isValid(grid, cellRow, cellCol + 1))
        {
            que.push(new Pair(cellRow, cellCol + 1));
            minDistance[cellRow][cellCol + 1]
                = Math.min(minDistance[cellRow][cellCol + 1],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol + 1] = 1;
        }
   
        // Left cell
        if (isValid(grid, cellRow, cellCol - 1))
        {
            que.push(new Pair(cellRow, cellCol - 1));
            minDistance[cellRow][cellCol - 1]
                = Math.min(minDistance[cellRow][cellCol - 1],
                    minDistance[cellRow][cellCol] + 1);
            visited[cellRow][cellCol - 1] = 1;
        }
   
        // remove the visited cell
        que.shift();
    }
   
    let i;
   
    // Minimum distance to the corner
    // of the first row, first column
    minFromSource = Math.min(minFromSource,
                        minDistance[0][0]);
   
    // Minimum distance to the corner
    // of the last row, first column
    minFromSource = Math.min(minFromSource,
                        minDistance[row - 1][0]);
   
    // Minimum distance to the corner
    // of the last row, last column
    minFromSource = Math.min(minFromSource,
                        minDistance[row - 1][col - 1]);
   
    // Minimum distance to the corner
    // of the first row, last column
    minFromSource = Math.min(minFromSource,
                        minDistance[0][col - 1]);
   
    // If no path exists
    if (minFromSource == row * col)
        return -1;
   
    // Return the minimum distance
    return minFromSource;
}
 
// Driver code
let sourceRow = 3, sourceCol = 3;
let grid = [[1, 1, 1, 0, 0],
                    [0, 0, 1, 0, 1],
                    [0, 0, 1, 0, 1],
                    [1, 0, 0, 0, 1],
                    [1, 1, 0, 1, 0]];
document.write(_minDistance(grid, sourceRow, sourceCol));
 
// This code is contributed by avanitrachhadiya2155
</script>


Output: 

4

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Check Also
Close
Back to top button