Count the number of digits of palindrome numbers in an array

Given an array arr[] with N integers. The task is to count all the digits of all palindrome numbers present in the array.
Examples:
Input: arr[] = {121, 56, 434}
Output: 6
Only 121 and 434 are palindromes
and digitCount(121) + digitCount(434) = 3 + 3 = 6
Input: arr[] = {56, 455, 546, 234}
Output: 0
Approach: For every element of the array, if it is a one digit number then add 1 to the answer for its digit else check if the number is a palindrome. If yes then find the count of its digits and add it to the answer.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include<bits/stdc++.h>using namespace std;// Function to return the reverse of nint reverse(int n){ int rev = 0; while (n > 0) { int d = n % 10; rev = rev * 10 + d; n = n / 10; } return rev;}// Function that returns true// if n is a palindromebool isPalin(int n){ return (n == reverse(n));}// Function to return the// count of digits of nint countDigits(int n){ int c = 0; while (n > 0) { n = n / 10; c++; } return c;}// Function to return the count of digits// in all the palindromic numbers of arr[]int countPalinDigits(int arr[], int n){ int s = 0; for (int i = 0; i < n; i++) { // If arr[i] is a one digit number // or it is a palindrome if (arr[i] < 10 || isPalin(arr[i])) { s += countDigits(arr[i]); } } return s;}// Driver codeint main(){ int arr[] = { 121, 56, 434 }; int n = sizeof(arr) / sizeof(arr[0]); cout << (countPalinDigits(arr, n)); return 0;}// This code is contributed by mits |
Java
// Java implementation of the approachimport java.util.*;class GFG { // Function to return the reverse of n static int reverse(int n) { int rev = 0; while (n > 0) { int d = n % 10; rev = rev * 10 + d; n = n / 10; } return rev; } // Function that returns true // if n is a palindrome static boolean isPalin(int n) { return (n == reverse(n)); } // Function to return the // count of digits of n static int countDigits(int n) { int c = 0; while (n > 0) { n = n / 10; c++; } return c; } // Function to return the count of digits // in all the palindromic numbers of arr[] static int countPalinDigits(int[] arr, int n) { int s = 0; for (int i = 0; i < n; i++) { // If arr[i] is a one digit number // or it is a palindrome if (arr[i] < 10 || isPalin(arr[i])) { s += countDigits(arr[i]); } } return s; } // Driver code public static void main(String[] args) { int[] arr = { 121, 56, 434 }; int n = arr.length; System.out.println(countPalinDigits(arr, n)); }} |
Python3
# Python3 implementation of the approach # Function to return the reverse of n def reverse(n): rev = 0; while (n > 0): d = n % 10; rev = rev * 10 + d; n = n // 10; return rev; # Function that returns true # if n is a palindrome def isPalin(n): return (n == reverse(n)); # Function to return the # count of digits of n def countDigits(n): c = 0; while (n > 0): n = n // 10; c += 1; return c; # Function to return the count of digits # in all the palindromic numbers of arr[] def countPalinDigits(arr, n): s = 0; for i in range(n): # If arr[i] is a one digit number # or it is a palindrome if (arr[i] < 10 or isPalin(arr[i])): s += countDigits(arr[i]); return s; # Driver code arr = [ 121, 56, 434 ]; n = len(arr); print(countPalinDigits(arr, n)); # This code contributed by Rajput-Ji |
C#
// C# implementation of the approach using System; class GFG { // Function to return the reverse of n static int reverse(int n) { int rev = 0; while (n > 0) { int d = n % 10; rev = rev * 10 + d; n = n / 10; } return rev; } // Function that returns true // if n is a palindrome static bool isPalin(int n) { return (n == reverse(n)); } // Function to return the // count of digits of n static int countDigits(int n) { int c = 0; while (n > 0) { n = n / 10; c++; } return c; } // Function to return the count of digits // in all the palindromic numbers of arr[] static int countPalinDigits(int[] arr, int n) { int s = 0; for (int i = 0; i < n; i++) { // If arr[i] is a one digit number // or it is a palindrome if (arr[i] < 10 || isPalin(arr[i])) { s += countDigits(arr[i]); } } return s; } // Driver code public static void Main() { int[] arr = { 121, 56, 434 }; int n = arr.Length; Console.WriteLine(countPalinDigits(arr, n)); }}/* This code contributed by PrinciRaj1992 */ |
Javascript
<script>// Javascript implementation of the approach// Function to return the reverse of nfunction reverse(n){ let rev = 0; while (n > 0) { let d = n % 10; rev = rev * 10 + d; n = parseInt(n / 10); } return rev;}// Function that returns true// if n is a palindromefunction isPalin(n){ return (n == reverse(n));}// Function to return the// count of digits of nfunction countDigits(n){ let c = 0; while (n > 0) { n = parseInt(n / 10); c++; } return c;}// Function to return the count of digits// in all the palindromic numbers of arr[]function countPalinDigits(arr, n){ let s = 0; for (let i = 0; i < n; i++) { // If arr[i] is a one digit number // or it is a palindrome if (arr[i] < 10 || isPalin(arr[i])) { s += countDigits(arr[i]); } } return s;}// Driver code let arr = [ 121, 56, 434 ]; let n = arr.length; document.write(countPalinDigits(arr, n));</script> |
Output:
6
Time Complexity : O(n)
Auxiliary Space: O(1)
Shorter Python Implementation
C++
// C++ code to implement the approach#include <bits/stdc++.h>using namespace std;// Function to return the count of digits // in all the palindromic numbers of arr[] int countPalinDigits(vector<int> arr){ int sum = 0; for (int n: arr) { string n_str = to_string(n); int l = n_str.length(); string rev = to_string(n); reverse(rev.begin(), rev.end()); if (rev == n_str) // if palindrome sum += l; } return sum; }// Driver code int main(){ vector <int> arr = { 121, 56, 434 }; cout << countPalinDigits(arr) << endl; }// This code is contributed by phasing17 |
Java
// Java code to implement the approachimport java.util.*;class GFG{ // Function to return the count of digits // in all the palindromic numbers of arr[] static int countPalinDigits(int[] arr) { int sum = 0; for (int n : arr) { String n_str = String.valueOf(n); int l = n_str.length(); String rev = new StringBuilder(new String(n_str)).reverse().toString(); if (rev.equals(n_str)) // if palindrome sum += l; } return sum; } // Driver code public static void main(String[] args) { int[] arr = { 121, 56, 434 }; System.out.println(countPalinDigits(arr)); }}// This code is contributed by phasing17 |
Python3
# Function to return the count of digits # in all the palindromic numbers of arr[] def countPalinDigits(arr): sum = 0 for n in arr: n_str = str(n) l = len(n_str) if n_str[l::-1] == n_str: # if palindrome sum += l return sum# Driver code arr = [ 121, 56, 434 ]; print(countPalinDigits(arr)); |
C#
// C# code to implement the approachusing System;using System.Collections.Generic;class GFG{ // Function to return the count of digits // in all the palindromic numbers of arr[] static int countPalinDigits(int[] arr) { int sum = 0; foreach (int n in arr) { string n_str = Convert.ToString(n); int l = n_str.Length; string rev = Convert.ToString(n); char[] revs = rev.ToCharArray(); Array.Reverse(revs); rev = new string(revs); if (rev.Equals(n_str)) // if palindrome sum += l; } return sum; } // Driver code public static void Main(string[] args) { int[] arr = { 121, 56, 434 }; Console.WriteLine(countPalinDigits(arr)); }}// This code is contributed by phasing17 |
Javascript
// Function to return the count of digits // in all the palindromic numbers of arr[] function countPalinDigits(arr){ let sum = 0 for (let n of arr) { let n_str = "" + n; let l = n_str.length let rev = n_str.split("").reverse().join("") if (rev.localeCompare(n_str) == 0) // if palindrome sum += l } return sum }// Driver code let arr = [ 121, 56, 434 ]; console.log(countPalinDigits(arr)); // This code is contributed by phasing17 |
Output:
6
Time Complexity : O(n)
Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



