Build a DFA to accept a binary string containing “01” i times and “1” 2j times

Given a binary string str, the task is to build a DFA that accepts given binary string if it contains “01” i times and “1” 2j times, i.e.,
Examples:
Input: str = “011111”
Output: Accepted
Explanation:
The string follows the language as: (01)1(1)2*2Input: str = “01111”
Output: Not Accepted
DFA or Deterministic Finite Automata is a finite state machine which accepts a string(under some specific condition) if it reaches a final state, otherwise rejects it.
In DFA, there is no concept of memory, therefore we have to check the string character by character, beginning with the 0th character. The input set of characters for the problem is {0, 1}. For a DFA to be valid, there must a transition rule defined for each symbol of the input set at every state to a valid state. Therefore, the following steps are followed to design the DFA:
- Create initial stage and make the transition of 0 and 1 to next possible state.
- Transition of 0 is always followed by transition of 1.
- Make an initial state and transit its input alphabets, i.e, 0 and 1 to two different states.
- Check for acceptance of string after each transition to ignore errors.
- First, make DfA for minimum length string then go ahead step by step.
- Define Final State(s) according to the acceptance of string.
Step by Step Approach to design a DFA:
- Step 1: Minimum possible acceptable string is 0111, i.e, (01)1 (11)1. So, create an initial state “A” that make transition of 0 to state “B” and then transition of 1 from “B” to state “C” then transition of 1 from “C” to “D”, then transition of 1 from “D” to “E” as shown in diagram make this stage “E” is final state.
- Step 2: Now, think about the string having consecutive (01) and then followed by consecutive (11) to end the string. Hence, when i>1, make a transition of “0” from state “C” to state “B” and make a transition of “1” from the state “E” to state “D”. Hence, strings like 010111, 011111, 0101111111, etc. are acceptable now.
- Step 3: We have done with all kind of strings possible to accept. But, there are few input alphabets which are not transited to any of the states. In this case, all these kind of input will be sent to some dead state to block their further transitions that are not acceptable. Input alphabets of the dead state will be sent to the dead state itself. Therefore, the final design of the DFA is:
Below is the implementation of the above approach:
C++
#include <iostream>#include <string>using namespace std;// Function for the state Avoid checkstatea(string n);// Function for the state Bvoid stateb(string n);// Function for the state Cvoid statec(string n);// Function for the state Dvoid stated(string n);// Function for the state E void statee(string n);// Driver codeint main() { string n = "011111"; checkstatea(n); return 0;}// Function for the state Avoid checkstatea(string n) { if (n.length() % 2 != 0 || n.length() < 4) { cout << "string not accepted" << endl; } else { int i = 0; // State transition to B // if the character is 0 if (n[i] == '0') { stateb(n.substr(1)); } else { cout << "string not accepted" << endl; } }}// Function for the state Bvoid stateb(string n) { int i = 0; if (n[i] == '0') { cout << "string not accepted" << endl; } else { statec(n.substr(1)); }}// Function for the state Cvoid statec(string n) { int i = 0; // State transition to D // if the character is 1 if (n[i] == '1') { stated(n.substr(1)); } else { stateb(n.substr(1)); }}// Function for the state Dvoid stated(string n) { int i = 0; if (n.length() == 1) { if (n[i] == '1') { cout << "string accepted" << endl; } else { cout << "string not accepted" << endl; } } else { // State transition to E // if the character is 1 if (n[i] == '1') { statee(n.substr(1)); } else { cout << "string not accepted" << endl; } }}// Function for the state E void statee(string n) { int i = 0; if (n.length() == 1) { if (n[i] == '0') { cout << "string not accepted" << endl; } else { cout << "string accepted" << endl; } } else { if (n[i] == '0') { cout << "string not accepted" << endl; } else { stated(n.substr(1)); } }} |
Java
// Java code for the above DFAimport java.util.*;class GFG{ // Function for the state Astatic void checkstatea(String n){ if (n.length() % 2 != 0 || n.length() < 4) System.out.print("string not accepted"); else { int i = 0; // State transition to B // if the character is 0 if (n.charAt(i) == '0') stateb(n.substring(1)); else System.out.print("string not accepted"); }} // Function for the state Bstatic void stateb(String n){ int i = 0; if (n.charAt(i) == '0') System.out.print("string not accepted"); // State transition to C // if the character is 1 else statec(n.substring(1));} // Function for the state Cstatic void statec(String n){ int i = 0; // State transition to D // if the character is 1 if (n.charAt(i) == '1') stated(n.substring(1)); // State transition to B // if the character is 0 else stateb(n.substring(1));} // Function for the state Dstatic void stated(String n){ int i = 0; if (n.length() == 1) { if (n.charAt(i) == '1') System.out.print("string accepted"); else System.out.print("string not accepted"); } else { // State transition to E // if the character is 1 if (n.charAt(i) == '1') statee(n.substring(1)); else System.out.print("string not accepted"); }} // Function for the state E static void statee(String n){ int i = 0; if (n.length() == 1) { if (n.charAt(i) == '0') System.out.print("string not accepted"); else System.out.print("string accepted"); } else { if (n.charAt(i) == '0') System.out.print("string not accepted"); stated(n.substring(1)); }} // Driver codepublic static void main(String []args){ // Take string input String n ="011111"; // Call stateA to check the input checkstatea(n);}}// This code is contributed by pratham76 |
Python3
# Python3 program for the given# language# Function for the state Adef checkstatea(n): if(len(n)%2!=0 or len(n)<4): print("string not accepted") else: i=0 # State transition to B # if the character is 0 if(n[i]=='0'): stateb(n[1:]) else: print("string not accepted")# Function for the state Bdef stateb(n): i=0 if(n[i]=='0'): print("string not accepted") # State transition to C # if the character is 1 else: statec(n[1:])# Function for the state Cdef statec(n): i=0 # State transition to D # if the character is 1 if(n[i]=='1'): stated(n[1:]) # State transition to B # if the character is 0 else: stateb(n[1:])# Function for the state Ddef stated(n): i=0 if(len(n)==1): if(n[i]=='1'): print("string accepted") else: print("string not accepted") else: # State transition to E # if the character is 1 if(n[i]=='1'): statee(n[1:]) else: print("string not accepted") # Function for the state E def statee(n): i=0 if(len(n)==1): if(n[i]=='0'): print("string not accepted") else: print("string accepted") else: if(n[i]=='0'): print("string not accepted") stated(n[1:]) # Driver codeif __name__ == "__main__": n = "011111" checkstatea(n) |
Javascript
<script> // JavaScript code for the above DFA // Function for the state A function checkstatea(n) { if (n.length % 2 !== 0 || n.length < 4) document.write("string not accepted"); else { var i = 0; // State transition to B // if the character is 0 if (n[i] === "0") stateb(n.substring(1)); else document.write("string not accepted"); } } // Function for the state B function stateb(n) { var i = 0; if (n[i] === "0") document.write("string not accepted"); // State transition to C // if the character is 1 else statec(n.substring(1)); } // Function for the state C function statec(n) { var i = 0; // State transition to D // if the character is 1 if (n[i] === "1") stated(n.substring(1)); // State transition to B // if the character is 0 else stateb(n.substring(1)); } // Function for the state D function stated(n) { var i = 0; if (n.length === 1) { if (n[i] === "1") document.write("string accepted"); else document.write("string not accepted"); } else { // State transition to E // if the character is 1 if (n[i] === "1") statee(n.substring(1)); else document.write("string not accepted"); } } // Function for the state E function statee(n) { var i = 0; if (n.length == 1) { if (n[i] === "0") document.write("string not accepted"); else document.write("string accepted"); } else { if (n[i] === "0") document.write("string not accepted"); stated(n.substring(1)); } } // Driver code // Take string input var n = "011111"; // Call stateA to check the input checkstatea(n); </script> |
C#
// C# code for the above DFAusing System;using System.Collections;using System.Collections.Generic;class GFG{ // Function for the state Astatic void checkstatea(string n){ if(n.Length % 2 != 0 || n.Length < 4) Console.Write("string not accepted"); else { int i = 0; // State transition to B // if the character is 0 if(n[i] == '0') stateb(n.Substring(1)); else Console.Write("string not accepted"); }}// Function for the state Bstatic void stateb(string n){ int i = 0; if(n[i] == '0') Console.Write("string not accepted"); // State transition to C // if the character is 1 else statec(n.Substring(1));} // Function for the state Cstatic void statec(string n){ int i = 0; // State transition to D // if the character is 1 if(n[i] == '1') stated(n.Substring(1)); // State transition to B // if the character is 0 else stateb(n.Substring(1));}// Function for the state Dstatic void stated(string n){ int i = 0; if(n.Length == 1) { if(n[i] == '1') Console.Write("string accepted"); else Console.Write("string not accepted"); } else { // State transition to E // if the character is 1 if(n[i] == '1') statee(n.Substring(1)); else Console.Write("string not accepted"); }}// Function for the state E static void statee(string n){ int i = 0; if(n.Length == 1) { if(n[i] == '0') Console.Write("string not accepted"); else Console.Write("string accepted"); } else { if(n[i] == '0') Console.Write("string not accepted"); stated(n.Substring(1)); }} // Driver codepublic static void Main(string []args){ // Take string input string n ="011111"; // Call stateA to check the input checkstatea(n);}}// This code is contributed by rutvik_56 |
string accepted
Time complexity: O(N) where N is length of string input
Auxiliary space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




