Maximum segment value after putting k breakpoints in a number

Given a large number as string s and an integer k which denotes the number of breakpoints we must put in the number k <= string length. The task is to find maximum segment value after putting exactly k breakpoints.
Examples:
Input : s = "8754", k = 2 Output : Maximum number = 87 Explanation : We need to two breakpoints. After putting the breakpoints, we get following options 8 75 4 87 5 4 The maximum segment value is 87. Input : s = "999", k = 1 Output : Maximum Segment Value = 99 Explanation : We need to one breakpoint. After putting the breakpoint, we either get 99,9 or 9,99.
One important observation is, the maximum would always be of length “string-length – k” which is the maximum value of any segment. Considering the fact, problem becomes like sliding window problem means we need to find maximum of all substrings of size (string-length – k).
Implementation:
C++
// CPP program to find the maximum segment// value after putting k breaks.#include <bits/stdc++.h>using namespace std;// Function to Find Maximum Numberint findMaxSegment(string &s, int k) { // Maximum segment length int seg_len = s.length() - k; // Find value of first segment of seg_len int res = 0; for (int i=0; i<seg_len; i++) res = res * 10 + (s[i] - '0'); // Find value of remaining segments using sliding // window int seg_len_pow = pow(10, seg_len-1); int curr_val = res; for (int i = 1; i <= (s.length() - seg_len); i++) { // To find value of current segment, first remove // leading digit from previous value curr_val = curr_val - (s[i-1]- '0')*seg_len_pow; // Then add trailing digit curr_val = curr_val*10 + (s[i+seg_len-1]- '0'); res = max(res, curr_val); } return res;}// Driver's Functionint main() { string s = "8754"; int k = 2; cout << "Maximum number = " << findMaxSegment(s, k); return 0;} |
Java
// Java program to find the maximum segment// value after putting k breaks.class GFG { // Function to Find Maximum Number static int findMaxSegment(String s, int k) { // Maximum segment length int seg_len = s.length() - k; // Find value of first segment of seg_len int res = 0; for (int i = 0; i < seg_len; i++) res = res * 10 + (s.charAt(i) - '0'); // Find value of remaining segments using // sliding window int seg_len_pow = (int)Math.pow(10, seg_len - 1); int curr_val = res; for (int i = 1; i <= (s.length() - seg_len); i++) { // To find value of current segment, // first remove leading digit from // previous value curr_val = curr_val - (s.charAt(i - 1) - '0') * seg_len_pow; // Then add trailing digit curr_val = curr_val * 10 + (s.charAt(i + seg_len - 1) - '0'); res = Math.max(res, curr_val); } return res; } // Driver code public static void main(String[] args) { String s = "8754"; int k = 2; System.out.print("Maximum number = " + findMaxSegment(s, k)); }}// This code is contributed by Anant Agarwal. |
Python3
# Python3 program to find the maximum segment # value after putting k breaks. # Function to Find Maximum Number def findMaxSegment(s, k): # Maximum segment length seg_len = len(s) - k # Find value of first segment of seg_len res = 0 for i in range(seg_len): res = res * 10 + (ord(s[i]) - ord('0')) # Find value of remaining segments # using sliding window seg_len_pow = pow(10, seg_len - 1) curr_val = res for i in range(1, len(s) - seg_len): # To find value of current segment, # first remove leading digit from # previous value curr_val = curr_val - (ord(s[i - 1])- ord('0')) * seg_len_pow # Then add trailing digit curr_val = (curr_val * 10 + (ord(s[i + seg_len - 1]) - ord('0'))) res = max(res, curr_val) return res# Driver Codeif __name__ == '__main__': s = "8754" k = 2 print("Maximum number = ", findMaxSegment(s, k))# This code is contributed by PranchalK |
C#
// C# program to find the maximum segment// value after putting k breaks.using System;class GFG { // Function to Find Maximum Number static int findMaxSegment(string s, int k) { // Maximum segment length int seg_len = s.Length - k; // Find value of first segment of seg_len int res = 0; for (int i = 0; i < seg_len; i++) res = res * 10 + (s[i] - '0'); // Find value of remaining segments using // sliding window int seg_len_pow = (int)Math.Pow(10, seg_len - 1); int curr_val = res; for (int i = 1; i <= (s.Length- seg_len); i++) { // To find value of current segment, // first remove leading digit from // previous value curr_val = curr_val - (s[i - 1] - '0') * seg_len_pow; // Then add trailing digit curr_val = curr_val * 10 + (s[i + seg_len - 1] - '0'); res = Math.Max(res, curr_val); } return res; } // Driver code public static void Main() { String s = "8754"; int k = 2; Console.WriteLine("Maximum number = " + findMaxSegment(s, k)); }}// This code is contributed by vt_m. |
Javascript
<script>// JavaScript program to find the maximum segment// value after putting k breaks.// Function to Find Maximum Numberfunction findMaxSegment(s, k){ // Maximum segment length let seg_len = s.length - k // Find value of first segment of seg_len let res = 0 for(let i=0;i<seg_len;i++) res = res * 10 + (s.charCodeAt(i) - '0'.charCodeAt(0)) // Find value of remaining segments // using sliding window let seg_len_pow = Math.pow(10, seg_len - 1) let curr_val = res for(let i = 1;i< s.length - seg_len;i++){ // To find value of current segment, // first remove leading digit from // previous value curr_val = curr_val - (s.charCodeAt(i - 1)-'0'.charCodeAt(0)) * seg_len_pow // Then add trailing digit curr_val = (curr_val * 10 + (s.charCodeAt(i + seg_len - 1) - '0'.charCodeAt(0))) res = Math.max(res, curr_val) } return res}// Driver Codelet s = "8754"let k = 2document.writea("Maximum number = ",findMaxSegment(s, k))// This code is contributed by shinjanpatra</script> |
Output
Maximum number = 87
Time complexity : O(K)
Auxiliary Space : O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



