Maximize the median of an array

Given an array of n elements. The task is to print the array in a form such that the median of that array is maximum.
Examples:
Input: arr[] = {3, 1, 2, 3, 8}
Output: 3 1 8 2 3
Input: arr[] = {9, 8, 7, 6, 5, 4}
Output: 7 6 9 8 5 4
Approach:
Median of any sequence is the middle most element of given array. Hence if the array has an odd number of elements the n/2 th element is the median of the array and in the case, if the array has even number of elements, then n/2th and n/2 – 1 th element are median.
To maximize the median of any array, first of all, check whether its size is even or odd depending upon the size of array perform following steps.
- If size is odd: Find the maximum element from array and swap it with the n/2th element.
- If size is even: Find the first two maximum element and swap them with n/2th and n/2-1 th elements.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach#include <bits/stdc++.h>using namespace std;// Function to print array with maximum medianvoid printMaxMedian(int arr[], int n){ // case when size of array is odd if (n % 2) { int* maxElement = max_element(arr, arr + n); swap(*maxElement, arr[n / 2]); } // when the size of the array is even else { // find 1st maximum element int* maxElement1 = max_element(arr, arr + n); // find 2nd maximum element int* maxElement2 = max_element(arr, maxElement1); maxElement2 = max(maxElement2, max_element(maxElement1 + 1, arr + n)); // swap position for median swap(*maxElement1, arr[n / 2]); swap(*maxElement2, arr[n / 2 - 1]); } // print resultant array for (int i = 0; i < n; i++) cout << arr[i] << " ";}// Driver codeint main(){ int arr[] = { 4, 8, 3, 1, 3, 7, 0, 4 }; int n = sizeof(arr) / sizeof(arr[0]); printMaxMedian(arr, n); return 0;} |
Java
// Java implementation of the above approach import java.util.*;import java.lang.*;import java.io.*;class GFG{public static int getIndexOfLargest(int[] array, int st, int n){ if (array == null || array.length == 0) // null or empty return -1; int largest = st; for(int i = st + 1; i < n; i++) { if (array[i] > array[largest]) largest = i; } // Position of the first largest // found return largest; }public static void swap(int a, int b, int[] arr){ int temp = arr[a]; arr[a] = arr[b]; arr[b] = temp;}// Function to print array with maximum medianpublic static void printMaxMedian(int[] arr, int n){ // Case when size of array is odd if (n % 2 != 0) { int maxElement = getIndexOfLargest( arr, 0, arr.length); swap(maxElement, n / 2, arr); } // When the size of the array is even else { // Find 1st maximum element int maxElement1 = getIndexOfLargest( arr, 0, arr.length); // Find 2nd maximum element int maxElement2 = getIndexOfLargest( arr, 0, maxElement1); maxElement2 = Math.max( arr[maxElement2], getIndexOfLargest(arr, maxElement1 + 1, arr.length)); // Swap position for median swap(maxElement1, n / 2, arr); swap(maxElement2, n / 2 - 1, arr); } // Print resultant array for(int i = 0; i < n; i++) System.out.print(arr[i] + " ");}// Driver Codepublic static void main(String[] args) throws java.lang.Exception{ int arr[] = { 4, 8, 3, 1, 3, 7, 0, 4 }; printMaxMedian(arr, arr.length);}}// This code is contributed by grand_master |
Python3
# Python3 implementation of the above approach # Function to print the array with # maximum median def printMaxMedian(arr, n): # case when size of the array is odd if n % 2 != 0: maxElement = arr.index(max(arr)) (arr[maxElement], arr[n // 2]) = (arr[n // 2], arr[maxElement]) # when size of array is even else: # find 1st maximum element maxElement1 = arr.index(max(arr)) # find 2nd maximum element maxElement2 = arr.index(max(arr[0 : maxElement1])) maxElement2 = arr.index(max(arr[maxElement2], max(arr[maxElement1 + 1:]))) # swap position for median (arr[maxElement1], arr[n // 2]) = (arr[n // 2], arr[maxElement1]) (arr[maxElement2], arr[n // 2 - 1]) = (arr[n // 2 - 1], arr[maxElement2]) # print the resultant array for i in range(0, n): print(arr[i], end = " ") # Driver code if __name__ == "__main__": arr = [4, 8, 3, 1, 3, 7, 0, 4] n = len(arr) printMaxMedian(arr, n) # This code is contributed by Rituraj Jain |
C#
// C# implementation of the above approach using System;class GFG{ static int getIndexOfLargest(int[] array, int st, int n){ if (array == null || array.Length == 0) // Null or empty return -1; int largest = st; for(int i = st + 1; i < n; i++) { if (array[i] > array[largest]) largest = i; } // Position of the first largest // found return largest; } static void swap(int a, int b, int[] arr){ int temp = arr[a]; arr[a] = arr[b]; arr[b] = temp;} // Function to print array with maximum medianstatic void printMaxMedian(int[] arr, int n){ // Case when size of array is odd if (n % 2 != 0) { int maxElement = getIndexOfLargest( arr, 0, arr.Length); swap(maxElement, n / 2, arr); } // When the size of the array is even else { // Find 1st maximum element int maxElement1 = getIndexOfLargest( arr, 0, arr.Length); // Find 2nd maximum element int maxElement2 = getIndexOfLargest( arr, 0, maxElement1); maxElement2 = Math.Max( arr[maxElement2], getIndexOfLargest(arr, maxElement1 + 1, arr.Length)); // Swap position for median swap(maxElement1, n / 2, arr); swap(maxElement2, n / 2 - 1, arr); } // Print resultant array for(int i = 0; i < n; i++) Console.Write(arr[i] + " ");}// Driver Codestatic void Main(){ int[] arr = { 4, 8, 3, 1, 3, 7, 0, 4 }; printMaxMedian(arr, arr.Length);}}// This code is contributed by divyeshrabadiya07 |
Javascript
function getIndexOfLargest(array, st, n){ if (array == null || array.length == 0) // null or empty return -1; let largest = st; for(let i = st + 1; i < n; i++) { if (array[i] > array[largest]) largest = i; } // Position of the first largest // found return largest; }function swap(a, b, arr){ let temp = arr[a]; arr[a] = arr[b]; arr[b] = temp;}// Function to print array with maximum medianfunction printMaxMedian(arr, n){ // Case when size of array is odd if (n % 2 != 0) { let maxElement = getIndexOfLargest(arr, 0, arr.length); swap(maxElement, n / 2, arr); } else { // Find 1st maximum element let maxElement1 = getIndexOfLargest(arr, 0, arr.length); // Find 2nd maximum element let maxElement2 = getIndexOfLargest(arr, 0, maxElement1); maxElement2 = Math.max(arr[maxElement2], getIndexOfLargest(arr, maxElement1 + 1,arr.length)); // Swap position for median swap(maxElement1, n / 2, arr); swap(maxElement2, n / 2 - 1, arr); } // Print resultant array for(let i = 0; i < n; i++){ document.write(arr[i] + " "); }} let arr = [ 4, 8, 3, 1, 3, 7, 0, 4 ]; printMaxMedian(arr, arr.length); // This code is contributed by aadityaburujwale. |
Output
4 3 3 7 8 1 0 4
Complexity Analysis:
- Time Complexity: O(n), where n is the size of the given array
- Auxiliary Space: O(1), as no extra space is used
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



