Printing all subsets of {1,2,3,…n} without using array or loop

Given a natural number n, print all the subsets of the set without using any array or loop (only the use of recursion is allowed).
Examples:
Input : n = 4
Output : { 1 2 3 4 }
{ 1 2 3 }
{ 1 2 4 }
{ 1 2 }
{ 1 3 4 }
{ 1 3 }
{ 1 4 }
{ 1 }
{ 2 3 4 }
{ 2 3 }
{ 2 4 }
{ 2 }
{ 3 4 }
{ 3 }
{ 4 }
{ }
Input : n = 2
Output : { 1 2 }
{ 1 }
{ 2 }
{ }
Approach:
- Start from
upto 0.
- Consider the binary representation of num with n bits.
- Start from the leftmost bit which represents 1, the second bit represents 2, and so on until nth bit which represents n.
- Print the number corresponding to the bit if it is set.
- Perform the above steps for all values of num until it is equal to 0.
Let’s understand the above approach through an example:
Considering input n = 4, start from .
and so on … until num = 0.
Below is the implementation of the above approach:
C++
// C++ code to print all subsets// of {1, 2, 3, n} without using// array or loop, just recursion.#include <bits/stdc++.h>using namespace std;void subset(int, int, int);// This recursive function calls subset// function to print the subsets one by one.// numBits --> number of bits needed to// represent the number (simply input value n).// num --> Initially equal to 2 ^ n - 1 and// decreases by 1 every recursion until 0.void printSubsets(int numOfBits, int num) { if (num >= 0) { cout << "{ "; // Print the subset corresponding to // binary representation of num. subset(numOfBits - 1, num, numOfBits); cout << "}" << endl; // Call the function recursively to // print the next subset. printSubsets(numOfBits, num - 1); } else return;}// This function recursively prints the// subset corresponding to the binary// representation of num.// nthBit --> nth bit from right side// starting from n and decreases until 0void subset(int nthBit, int num, int numOfBits){ if (nthBit >= 0) { // Print number in given subset only // if the bit corresponding to it // is set in num. if (num & (1 << nthBit)) { cout << numOfBits - nthBit << " "; } // Check for the next bit subset(nthBit - 1, num, numOfBits); } else return;}// Driver Codeint main(){ int n = 4; printSubsets(n, pow(2, n) - 1);}// This code is contributed by// sanjeev2552 |
Java
// Java code to print all subsets // of {1, 2, 3, n} without using// array or loop, just recursion.class GfG { // This recursive function calls subset // function to print the subsets one by one. // numBits --> number of bits needed to // represent the number (simply input value n). // num --> Initially equal to 2 ^ n - 1 and // decreases by 1 every recursion until 0. static void printSubSets(int numOfBits, int num) { if (num >= 0) { System.out.print("{ "); // Print the subset corresponding to // binary representation of num. subset(numOfBits - 1, num, numOfBits); System.out.println("}"); // Call the function recursively to // print the next subset. printSubSets(numOfBits, num - 1); } else return; } // This function recursively prints the // subset corresponding to the binary // representation of num. // nthBit --> nth bit from right side // starting from n and decreases until 0. static void subset(int nthBit, int num, int numOfBits) { if (nthBit >= 0) { // Print number in given subset only // if the bit corresponding to it // is set in num. if ((num & (1 << nthBit)) != 0) { System.out.print(numOfBits - nthBit + " "); } // Check for the next bit subset(nthBit - 1, num, numOfBits); } else return; } // Driver code public static void main(String[] args) { int n = 4; printSubSets(n, (int) (Math.pow(2, n)) -1); }}// This code is contributed by laststringx |
Python3
# Python3 code to print all subsets # of {1, 2, 3, …n} without using# array or loop, just recursion.# This recursive function calls subset# function to print the subsets one by one. # numBits --> number of bits needed to # represent the number (simply input value n).# num --> Initially equal to 2 ^ n - 1 and # decreases by 1 every recursion until 0.def printSubsets(numOfBits, num): if num >= 0: print("{", end = " ") # Print the subset corresponding to # binary representation of num. subset(numOfBits-1, num, numOfBits) print("}") # Call the function recursively to # print the next subset. printSubsets(numOfBits, num-1) else: return# This function recursively prints the # subset corresponding to the binary # representation of num.# nthBit --> nth bit from right side # starting from n and decreases until 0.def subset(nthBit, num, numOfBits): if nthBit >= 0: # Print number in given subset only # if the bit corresponding to it # is set in num. if num & (1 << nthBit) != 0: print(numOfBits - nthBit, end = " ") # Check for the next bit subset(nthBit-1, num, numOfBits) else: return# Driver Code n = 4printSubsets(n, 2**n - 1) |
C#
// C# code to print all subsets // of {1, 2, 3, n} without using // array or loop, just recursion.using System;class GfG { // This recursive function calls subset // function to print the subsets one by one. // numBits --> number of bits needed to // represent the number (simply input value n). // num --> Initially equal to 2 ^ n - 1 and // decreases by 1 every recursion until 0. static void printSubSets(int numOfBits, int num) { if (num >= 0) { Console.Write("{ "); // Print the subset corresponding to // binary representation of num. subset(numOfBits - 1, num, numOfBits); Console.WriteLine("}"); // Call the function recursively to // print the next subset. printSubSets(numOfBits, num - 1); } else return; } // This function recursively prints the // subset corresponding to the binary // representation of num. // nthBit --> nth bit from right side // starting from n and decreases until 0. static void subset(int nthBit, int num, int numOfBits) { if (nthBit >= 0) { // Print number in given subset only // if the bit corresponding to it // is set in num. if ((num & (1 << nthBit)) != 0) { Console.Write(numOfBits - nthBit + " "); } // Check for the next bit subset(nthBit - 1, num, numOfBits); } else return; } // Driver codeM public static void Main(String[] args) { int n = 4; printSubSets(n, (int) (Math.Pow(2, n)) -1); } }// This code is contributed by Srathore |
Javascript
<script>// Javascript code to print all subsets// of {1, 2, 3, n} without using// array or loop, just recursion.// This recursive function calls subset// function to print the subsets one by one.// numBits --> number of bits needed to// represent the number (simply input value n).// num --> Initially equal to 2 ^ n - 1 and// decreases by 1 every recursion until 0.function printSubsets(numOfBits, num) { if (num >= 0) { document.write( "{ "); // Print the subset corresponding to // binary representation of num. subset(numOfBits - 1, num, numOfBits); document.write( "}<br>" ); // Call the function recursively to // print the next subset. printSubsets(numOfBits, num - 1); } else return;}// This function recursively prints the// subset corresponding to the binary// representation of num.// nthBit --> nth bit from right side// starting from n and decreases until 0function subset(nthBit, num, numOfBits){ if (nthBit >= 0) { // Print number in given subset only // if the bit corresponding to it // is set in num. if (num & (1 << nthBit)) { document.write( numOfBits - nthBit + " "); } // Check for the next bit subset(nthBit - 1, num, numOfBits); } else return;}// Driver Codevar n = 4;printSubsets(n, Math.pow(2, n) - 1);</script> |
Output:
{ 1 2 3 4 }
{ 1 2 3 }
{ 1 2 4 }
{ 1 2 }
{ 1 3 4 }
{ 1 3 }
{ 1 4 }
{ 1 }
{ 2 3 4 }
{ 2 3 }
{ 2 4 }
{ 2 }
{ 3 4 }
{ 3 }
{ 4 }
{ }
Time Complexity:
Auxiliary Space: O(n) for call stack
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




