Curzon Numbers

Given an integer N, check whether the given number is a Curzon Number or not.
A number N is said to be a Curzon Number if 2N + 1 is divisible by 2*N + 1.
Example:
Input: N = 5
Output: Yes
Explanation:
2^5 + 1 = 33 and 2*5 + 1 = 11
Since 11 divides 33, so 5 is a curzon number.Input: N = 10
Output: No
Explanation:
2^10 + 1 = 1025 and 2*10 + 1 = 21
1025 is not divisible by 21, so 10 is not a curzon number.
Approach: The approach is to compute and check if 2N + 1 is divisible by 2*N + 1 or not.
- First find the value of 2*N + 1
- Then find the value of 2N + 1
- Check if the second value is divisible by the first value, then it is a Curzon Number, else not.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to check if a number// is a Curzon number or notvoid checkIfCurzonNumber(int N){ long int powerTerm, productTerm; // Find 2^N + 1 powerTerm = pow(2, N) + 1; // Find 2*N + 1 productTerm = 2 * N + 1; // Check for divisibility if (powerTerm % productTerm == 0) cout << "Yes\n"; else cout << "No\n";}// Driver codeint main(){ long int N = 5; checkIfCurzonNumber(N); N = 10; checkIfCurzonNumber(N); return 0;} |
Java
// Java implementation of the approachimport java.io.*; import java.util.*; class GFG { // Function to check if a number// is a Curzon number or notstatic void checkIfCurzonNumber(long N){ double powerTerm, productTerm; // Find 2^N + 1 powerTerm = Math.pow(2, N) + 1; // Find 2*N + 1 productTerm = 2 * N + 1; // Check for divisibility if (powerTerm % productTerm == 0) System.out.println("Yes"); else System.out.println("No");} // Driver code public static void main(String[] args) { long N = 5; checkIfCurzonNumber(N); N = 10; checkIfCurzonNumber(N);}} // This code is contributed by coder001 |
Python3
# Python3 implementation of the approach# Function to check if a number# is a Curzon number or notdef checkIfCurzonNumber(N): powerTerm, productTerm = 0, 0 # Find 2^N + 1 powerTerm = pow(2, N) + 1 # Find 2*N + 1 productTerm = 2 * N + 1 # Check for divisibility if (powerTerm % productTerm == 0): print("Yes") else: print("No")# Driver codeif __name__ == '__main__': N = 5 checkIfCurzonNumber(N) N = 10 checkIfCurzonNumber(N)# This code is contributed by mohit kumar 29 |
C#
// C# implementation of the approachusing System;class GFG{ // Function to check if a number// is a curzon number or notstatic void checkIfCurzonNumber(long N){ double powerTerm, productTerm; // Find 2^N + 1 powerTerm = Math.Pow(2, N) + 1; // Find 2*N + 1 productTerm = 2 * N + 1; // Check for divisibility if (powerTerm % productTerm == 0) Console.WriteLine("Yes"); else Console.WriteLine("No");} // Driver code static public void Main (){ long N = 5; checkIfCurzonNumber(N); N = 10; checkIfCurzonNumber(N);}} // This code is contributed by shubhamsingh10 |
Javascript
<script>// Javascript implementation of the approach// Function to check if a number// is a Curzon number or notfunction checkIfCurzonNumber(N){ var powerTerm, productTerm; // Find 2^N + 1 powerTerm = Math.pow(2, N) + 1; // Find 2*N + 1 productTerm = 2 * N + 1; // Check for divisibility if (powerTerm % productTerm == 0) { document.write("Yes" + "</br>"); } else { document.write("No"); }} // Driver codevar N = 5;checkIfCurzonNumber(N); N = 10;checkIfCurzonNumber(N);// This code is contributed by Ankita saini </script> |
Output:
Yes No
Time complexity: O(log N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



