Find a number x such that sum of x and its digits is equal to given n.

Given a positive number n. We need to find a number x such that sum of digits of x to itself is equal to n. 
If no such x is possible print -1.
Examples: 
 

Input : n = 21
Output : x = 15
Explanation : x + its digit sum = 15 + 1 + 5 = 21 

Input : n = 5
Output : -1

 

We iterate from 1 to n and for each intermediate number, x find its digit sum and then add that to x, if that is equal to n then x will be our required answer. 
 

    // iterate from 1 to n. For every no.
    // check if its digit sum with it is
    // equal to n.
    for (int i = 0; i <= n; i++)
        if (i + digSum(i)  == n)
            return i;

    return -1;

 

C++




// CPP program to find x such that x +
// digSum(x) is equal to n.
#include <bits/stdc++.h>
using namespace std;
 
// utility function for digit sum
int digSum(int n)
{
    int sum = 0, rem = 0;
    while (n) {
        rem = n % 10;
        sum += rem;
        n /= 10;
    }
    return sum;
}
 
// function for finding x
int findX(int n)
{
    // iterate from 1 to n. For every no.
    // check if its digit sum with it is
    // equal to n.
    for (int i = 0; i <= n; i++)
        if (i + digSum(i) == n)
            return i;
     
    // if no such i found return -1
    return -1;
}
 
// driver function
int main()
{
    int n = 43;
    cout << "x = " << findX(n);
    return 0;
}


Java




// Java program to find x such that x +
// digSum(x) is equal to n.
import java.io.*;
public class GFG
{
     
    // utility function for digit sum
    static int digSum(int n)
    {
        int sum = 0, rem = 0;
         
        while (n>0) {
            rem = n % 10;
            sum += rem;
            n /= 10;
        }
         
        return sum;
    }
     
    // function for finding x
    static int findX(int n)
    {
         
        // iterate from 1 to n. For every no.
        // check if its digit sum with it is
        // equal to n.
        for (int i = 0; i <= n; i++)
            if (i + digSum(i) == n)
                return i;
         
        // if no such i found return -1
        return -1;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 43;
         
        System.out.println("x = "+findX(n));
    }
}
 
// This code is contributed by Anant Agarwal.


Python3




# Python3 program to find
# x such that dx + igSum(x)
# is equal to n.
 
# utility function
# for digit sum
def digSum(n):
    sum = 0;
    rem = 0;
    while(n):
        rem = n % 10;
        sum = sum + rem;
        n = int(n / 10);
    return sum;
 
# function for finding x
def findX(n):
     
    # iterate from 1 to n.
    # For every no.
    # check if its digit
    # sum with it is# equal to n.
    for i in range(n + 1):
        if (i + digSum(i) == n):
            return i;
     
    # if no such i
    # found return -1
    return -1;
 
# Driver Code
n = 43;
print("x = ", findX(n));
 
# This code is contributed by mits


C#




// C# program to find x such that
// x + digSum(x) is equal to n.
using System;
 
class GFG {
     
    // utility function for digit sum
    static int digSum(int n)
    {
        int sum = 0, rem = 0;
         
        while (n > 0)
        {
            rem = n % 10;
            sum += rem;
            n /= 10;
        }
         
        return sum;
    }
     
    // function for finding x
    static int findX(int n)
    {
         
        // iterate from 1 to n. For every no.
        // check if its digit sum with it is
        // equal to n.
        for (int i = 0; i <= n; i++)
            if (i + digSum(i) == n)
                return i;
         
        // if no such i found return -1
        return -1;
    }
     
    // Driver code
    public static void Main()
    {
        int n = 43;
         
        Console.Write("x = " + findX(n));
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to find x such that
// dx + igSum(x) is equal to n.
 
// utility function
// for digit sum
function digSum($n)
{
    $sum = 0; $rem = 0;
    while ($n)
    {
        $rem = $n % 10;
        $sum += $rem;
        $n /= 10;
    }
    return $sum;
}
 
// function for finding x
function findX($n)
{
     
    // iterate from 1 to n.
    // For every no.
    // check if its digit
    // sum with it is
    // equal to n.
    for ($i = 0; $i <= $n; $i++)
        if ($i + digSum($i) == $n)
            return $i;
     
    // if no such i
    // found return -1
    return -1;
}
 
    // Driver Code
    $n = 43;
    echo "x = " , findX($n);
 
// This code is contributed by vt_m.
?>


Javascript




<script>
 
// Javascript program to find x such that x +
// digSum(x) is equal to n.
  
    // utility function for digit sum
    function digSum(n)
    {
        let sum = 0, rem = 0;
           
        while (n>0) {
            rem = n % 10;
            sum += rem;
            n = Math.floor(n / 10);
        }
           
        return sum;
    }
       
    // function for finding x
    function findX(n)
    {
           
        // iterate from 1 to n. For every no.
        // check if its digit sum with it is
        // equal to n.
        for (let i = 0; i <= n; i++)
            if (i + digSum(i) == n)
                return i;
           
        // if no such i found return -1
        return -1;
    }
 
// driver program
 
    let n = 43;
           
    document.write("x = "+findX(n));
     
</script>


Output

x = 35

Time complexity: O(nlogn) for given input number n

This article is contributed by Shivam Pradhan (anuj_charm). If you like zambiatek and would like to contribute, you can also write an article using write.zambiatek.com or mail your article to review-team@zambiatek.com. See your article appearing on the zambiatek main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button