Print the nodes of Binary Tree having a grandchild

Given a Binary Tree, the task is to print the nodes that have grandchildren.
Examples:
Input:
Output: 20 8
Explanation:
20 and 8 are the grandparents of 4, 12 and 10, 14.Input:
Output: 1
Explanation:
1 is the grandparent of 4, 5.
Approach: The idea uses Recursion. Below are the steps:
- Traverse the given tree at every node.
- Check if each node has grandchildren node or not.
- For any tree node(say temp) if one of the below node exists then current node is the grandparent node:
- temp->left->left.
- temp->left->right.
- temp->right->left.
- temp->right->right.
- If any of the above exist for any node temp then the node temp is the grandparent node.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // A Binary Tree Node struct node { struct node *left, *right; int key; }; // Function to create new tree node node* newNode(int key) { node* temp = new node; temp->key = key; temp->left = temp->right = NULL; return temp; } // Function to print the nodes of // the Binary Tree having a grandchild void cal(struct node* root) { // Base case to check // if the tree exists if (root == NULL) return; else { // Check if there is a left and // right child of the curr node if (root->left != NULL && root->right != NULL) { // Check for grandchildren if (root->left->left != NULL || root->left->right != NULL || root->right->left != NULL || root->right->right != NULL) { // Print the node's key cout << root->key << " "; } } // Check if the left child // of node is not null else if (root->left != NULL) { // Check for grandchildren if (root->left->left != NULL || root->left->right != NULL) { cout << root->key << " "; } } // Check if the right child // of node is not null else if (root->right != NULL) { // Check for grandchildren if (root->right->left != NULL || root->right->right != NULL) { cout << root->key << " "; } } // Recursive call on left and // right subtree cal(root->left); cal(root->right); } } // Driver Code int main() { // Given Tree struct node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); // Function Call cal(root); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // A Binary Tree Node static class node { node left, right; int key; }; // Function to create new tree node static node newNode(int key) { node temp = new node(); temp.key = key; temp.left = temp.right = null; return temp; } // Function to print the nodes of // the Binary Tree having a grandchild static void cal(node root) { // Base case to check // if the tree exists if (root == null) return; else { // Check if there is a left and // right child of the curr node if (root.left != null && root.right != null) { // Check for grandchildren if (root.left.left != null || root.left.right != null || root.right.left != null || root.right.right != null) { // Print the node's key System.out.print(root.key + " "); } } // Check if the left child // of node is not null else if (root.left != null) { // Check for grandchildren if (root.left.left != null || root.left.right != null) { System.out.print(root.key + " "); } } // Check if the right child // of node is not null else if (root.right != null) { // Check for grandchildren if (root.right.left != null || root.right.right != null) { System.out.print(root.key + " "); } } // Recursive call on left and // right subtree cal(root.left); cal(root.right); } } // Driver Code public static void main(String[] args) { // Given Tree node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); // Function call cal(root); } } // This code is contributed by Amit Katiyar |
Python3
# Python3 program for the # above approach # A Binary Tree Node class newNode: def __init__(self, key): self.key = key self.left = None self.right = None # Function to print the nodes # of the Binary Tree having a # grandchild def cal(root): # Base case to check # if the tree exists if (root == None): return else: # Check if there is a left # and right child of the # curr node if (root.left != None and root.right != None): # Check for grandchildren if (root.left.left != None or root.left.right != None or root.right.left != None or root.right.right != None): # Print the node's key print(root.key, end = " ") # Check if the left child # of node is not None elif (root.left != None): # Check for grandchildren if (root.left.left != None or root.left.right != None): print(root.key, end = " ") # Check if the right child # of node is not None elif(root.right != None): # Check for grandchildren if (root.right.left != None or root.right.right != None): print(root.key, end = " ") # Recursive call on left and # right subtree cal(root.left) cal(root.right) # Driver Code if __name__ == '__main__': # Given Tree root = newNode(1) root.left = newNode(2) root.right = newNode(3) root.left.left = newNode(4) root.left.right = newNode(5) # Function Call cal(root) # This code is contributed by SURENDRA_GANGWAR |
C#
// C# program for the // above approach using System; class GFG{ // A Binary Tree Node public class node { public node left, right; public int key; }; // Function to create new // tree node static node newNode(int key) { node temp = new node(); temp.key = key; temp.left = temp.right = null; return temp; } // Function to print the // nodes of the Binary Tree // having a grandchild static void cal(node root) { // Base case to check // if the tree exists if (root == null) return; else { // Check if there is a left and // right child of the curr node if (root.left != null && root.right != null) { // Check for grandchildren if (root.left.left != null || root.left.right != null || root.right.left != null || root.right.right != null) { // Print the node's key Console.Write(root.key + " "); } } // Check if the left child // of node is not null else if (root.left != null) { // Check for grandchildren if (root.left.left != null || root.left.right != null) { Console.Write(root.key + " "); } } // Check if the right child // of node is not null else if (root.right != null) { // Check for grandchildren if (root.right.left != null || root.right.right != null) { Console.Write(root.key + " "); } } // Recursive call on left and // right subtree cal(root.left); cal(root.right); } } // Driver Code public static void Main(String[] args) { // Given Tree node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); // Function call cal(root); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript program for the above approach // A Binary Tree Node class node { constructor(key) { this.left = null; this.right = null; this.key = key; } } // Function to create new tree node function newNode(key) { let temp = new node(key); return temp; } // Function to print the nodes of // the Binary Tree having a grandchild function cal(root) { // Base case to check // if the tree exists if (root == null) return; else { // Check if there is a left and // right child of the curr node if (root.left != null && root.right != null) { // Check for grandchildren if (root.left.left != null || root.left.right != null || root.right.left != null || root.right.right != null) { // Print the node's key document.write(root.key + " "); } } // Check if the left child // of node is not null else if (root.left != null) { // Check for grandchildren if (root.left.left != null || root.left.right != null) { document.write(root.key + " "); } } // Check if the right child // of node is not null else if (root.right != null) { // Check for grandchildren if (root.right.left != null || root.right.right != null) { document.write(root.key + " "); } } // Recursive call on left and // right subtree cal(root.left); cal(root.right); } } // Given Tree let root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.left = newNode(4); root.left.right = newNode(5); // Function call cal(root); // This code is contributed by mukesh07. </script> |
Output:
1
Time Complexity: O(N), where N is the number of nodes.
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




