Count of common multiples of two numbers in a range

Given a range from L to R and every Xth tile is painted black and every Yth tile is painted white in that range from L to R. If a tile is painted both white and black, then it is considered to be painted grey. The task is to find the number of tiles that are colored grey in range L to R (both inclusive).
Examples:
Input: X = 2, Y = 3, L = 6, R = 18 Output: 3 The grey coloured tiles are numbered 6, 12, 18 Input: X = 1, Y = 4, L = 5, R = 10 Output: 1 The only grey coloured tile is 8.
Approach: Since every multiple of X is black and every multiple of Y is white. Any tile which is a multiple of both X and Y would be grey. The terms that are divisible by both X and Y are the terms that are divisible by the lcm of X and Y.
Lcm can be found out using the following formula:
lcm = (x*y) / gcd(x, y)
GCD can be computed in logn time using Euclid’s algorithm. The number of multiples of lcm in range L to R can be found by using a common trick of:
count(L, R) = count(R) - count(L-1)
Number of terms divisible by K less than N is:
floor(N/K)
Below is the implementation to find the number of grey tiles:
C++
// C++ implementation to find the number of// grey tiles#include <bits/stdc++.h>using namespace std;// Function to count the number of grey tilesint findTileCount(int x, int y, int l, int r){ int lcm = (x * y) / __gcd(x, y); // Number multiple of lcm less than L int countl = (l - 1) / lcm; // Number of multiples of lcm less than R+1 int countr = r / lcm; return countr - countl;}// Driver codeint main(){ int x = 2, y = 3, l = 6, r = 18; cout << findTileCount(x, y, l, r); return 0;} |
Java
// Java implementation to find the // number of grey tilesimport java.io.*;class GFG { // Function to count the number// of grey tiles static int findTileCount(int x, int y, int l, int r) { int lcm = (x * y) / __gcd(x, y); // Number multiple of lcm less than L int countl = (l - 1) / lcm; // Number of multiples of // lcm less than R+1 int countr = r / lcm; return countr - countl; } static int __gcd(int a, int b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a - b, b); return __gcd(a, b - a); }// Driver code public static void main (String[] args) { int x = 2, y = 3, l = 6, r = 18; System.out.println(findTileCount(x, y, l, r)); }} // This code is contributed ajit |
Python3
# Python3 implementation to find the number of # grey tiles # from math lib import gcd methodfrom math import gcd# Function to count the number of grey tiles def findTileCount(x, y, l, r) : lcm = (x * y) // gcd(x, y) # Number multiple of lcm less than L count1 = (l - 1) // lcm # Number of multiples of lcm less than R+1 countr = r // lcm return countr - count1# Driver codeif __name__ == "__main__" : x, y, l, r = 2, 3, 6, 18 print(findTileCount(x, y, l, r))# This code is contributed by # ANKITRAI1 |
C#
// C# implementation to find the // number of grey tiles using System;class GFG{ // Function to count the number// of grey tiles static int findTileCount(int x, int y, int l, int r) { int lcm = (x * y) / __gcd(x, y); // Number multiple of lcm less than L int countl = (l - 1) / lcm; // Number of multiples of // lcm less than R+1 int countr = r / lcm; return countr - countl; } static int __gcd(int a, int b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a - b, b); return __gcd(a, b - a); }// Driver code public static void Main() { int x = 2, y = 3, l = 6, r = 18; Console.Write(findTileCount(x, y, l, r)); }} // This code is contributed // by Kirti_Mangal |
PHP
<?php// PHP implementation to find the // number of grey tiles// Function to count the number// of grey tiles function findTileCount($x, $y, $l, $r) { $lcm = (int)(($x * $y) / __gcd($x, $y)); // Number multiple of lcm less than L $countl = (int)(($l - 1) / $lcm); // Number of multiples of // lcm less than R+1 $countr = (int)($r / $lcm); return $countr - $countl; } function __gcd($a, $b) { // Everything divides 0 if ($a == 0) return $b; if ($b == 0) return $a; // base case if ($a == $b) return $a; // a is greater if ($a > $b) return __gcd($a - $b, $b); return __gcd($a, $b - $a); }// Driver code $x = 2; $y = 3; $l = 6; $r = 18; echo findTileCount($x, $y, $l, $r); // This code is contributed// by Akanksha Rai(Abby_akku)?> |
Javascript
<script>// JavaScript implementation to find the // number of grey tiles// Function to count the number// of grey tiles function findTileCount(x,y,l,r) { lcm = parseInt((x * y) / __gcd(x, y)); // Number multiple of lcm less than L countl = parseInt((l - 1) / lcm); // Number of multiples of // lcm less than R+1 countr = parseInt(r / lcm); return countr - countl; } function __gcd(a, b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return __gcd(a - b, b); return __gcd(a, b - a); }// Driver code let x = 2;let y = 3;let l = 6; let r = 18; document.write(findTileCount(x, y, l, r)); // This code is contributed by bobby</script> |
3
Time Complexity: O(log(min(x, y))), where x and y are two parameters of gcd.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



