Python Program For Finding Length Of A Linked List

Write a function to count the number of nodes in a given singly linked list.
For example, the function should return 5 for linked list 1->3->1->2->1.
Iterative Solution:
1) Initialize count as 0
2) Initialize a node pointer, current = head.
3) Do following while current is not NULL
a) current = current -> next
b) count++;
4) Return count
Following is the Iterative implementation of the above algorithm to find the count of nodes in a given singly linked list.
Python
# A complete working Python program to # find the length of a Linked List# iteratively# Node classclass Node: # Function to initialize the node object def __init__(self, data): # Assign data self.data = data # Initialize next as null self.next = None# Linked List class contains a Node objectclass LinkedList: # Function to initialize head def __init__(self): self.head = None # This function is in LinkedList class. # It inserts a new node at the beginning # of Linked List. def push(self, new_data): # 1 & 2: Allocate the Node & # Put in the data new_node = Node(new_data) # 3. Make next of new Node as head new_node.next = self.head # 4. Move the head to point to the new Node self.head = new_node # This function counts number of nodes in # Linked List iteratively, given 'node' # as starting node. def getCount(self): # Initialise temp temp = self.head count = 0 # Initialise count # Loop while end of linked list is # not reached while (temp): count += 1 temp = temp.next return count# Code execution starts hereif __name__=='__main__': llist = LinkedList() llist.push(1) llist.push(3) llist.push(1) llist.push(2) llist.push(1) print ("Count of nodes is :", llist.getCount()) |
('Count of nodes is :', 5)
Time Complexity: O(n), where n represents the length of the given linked list.
Auxiliary Space: O(1), no extra space is required, so it is a constant.
Recursive Solution:
int getCount(head) 1) If head is NULL, return 0. 2) Else return 1 + getCount(head->next)
Following is the Recursive implementation of the above algorithm to find the count of nodes in a given singly linked list.
Python
# A complete working Python program to # find the length of a Linked List # recursively# Node classclass Node: # Function to initialize the node object def __init__(self, data): # Assign data self.data = data # Initialize next as null self.next = None # Linked List class contains a Node objectclass LinkedList: # Function to initialize head def __init__(self): self.head = None # This function is in LinkedList class. # It inserts a new node at the beginning # of Linked List. def push(self, new_data): # 1 & 2: Allocate the Node & # Put in the data new_node = Node(new_data) # 3. Make next of new Node as head new_node.next = self.head # 4. Move the head to point to the new Node self.head = new_node # This function counts number of nodes in # Linked List recursively, given 'node' # as starting node. def getCountRec(self, node): # Base case if (not node): return 0 else: return 1 + self.getCountRec(node.next) # A wrapper over getCountRec() def getCount(self): return self.getCountRec(self.head)# Code execution starts hereif __name__=='__main__': llist = LinkedList() llist.push(1) llist.push(3) llist.push(1) llist.push(2) llist.push(1) print ("Count of nodes is :", llist.getCount()) |
('Count of nodes is :', 5)
Time Complexity: O(n), where n represents the length of the given linked list.
Auxiliary Space: O(n), for recursive stack where n represents the length of the given linked list.
Approach: Linear Traversal Method
- Define a Node class with two attributes: data to store the value of the node, and next to store a reference to the next node in the list.
- Define a LinkedList class with a single attribute: head to store a reference to the first node in the list.
- Define an append method in the LinkedList class to add a new node to the end of the list.
- Define a length method in the LinkedList class to find the length of the list.
- Initialize a count variable to 0 and a current_node variable to the head of the list.
- Enter a while loop that continues until current_node is None.
- Increment the count variable by 1 on each iteration of the loop.
- Update current_node to be the next node in the list on each iteration of the loop.
- Return the value of the count variable as the length of the list.
Python3
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def append(self, data): new_node = Node(data) if self.head is None: self.head = new_node return current_node = self.head while current_node.next: current_node = current_node.next current_node.next = new_node def length(self): count = 0 current_node = self.head while current_node: count += 1 current_node = current_node.next return countlinked_list = LinkedList()linked_list.append(1)linked_list.append(2)linked_list.append(3)linked_list.append(4)linked_list.append(5)print(linked_list.length()) # Output: 5 |
5
The time complexity of the approach used in the program is O(n),
The auxiliary space used by the program is O(1).
Approach Name: Hash Table Method
Steps:
- Define a linked list class with a head pointer that points to the first node of the linked list.
- Create an empty hash table to store visited nodes.
- Traverse the linked list using the head pointer.
- For each node, check if it is already present in the hash table. If it is, stop traversing.
- If the node is not in the hash table, add it to the hash table and move to the next node.
- Return the size of the hash table as the length of the linked list.
Python3
# Python program for the above approach# Linked List Node Classclass Node: def __init__(self, data=None): self.data = data self.next = None# Linked List Classclass LinkedList: def __init__(self): self.head = None # Function to insert into Linked List def insert(self, data): new_node = Node(data) if self.head is None: self.head = new_node else: current_node = self.head while current_node.next: current_node = current_node.next current_node.next = new_node # Function to find the length of # the Linked List def length(self): visited_nodes = {} current_node = self.head while current_node: if current_node in visited_nodes: break visited_nodes[current_node] = True current_node = current_node.next return len(visited_nodes)# Driver Codelinked_list = LinkedList()linked_list.insert(1)linked_list.insert(2)linked_list.insert(3)# Function Callprint(linked_list.length()) |
3
Time Complexity: O(n), where n is the length of the linked list, due to the traversal of the linked list.
Auxiliary Space: O(n), due to the hash table used to store visited nodes.
Please refer complete article on Find Length of a Linked List (Iterative and Recursive) for more details!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




