Find the sum of n terms of the series 1,8,27,64 ….

Given a series, the task is to find the sum of the below series up to n terms:
1, 8, 27, 64, …
Examples:
Input: N = 2
Output: 9
9 = (2*(2+1)/2)^2
Input: N = 4
Output: 100
100 = (4*(4+1)/2)^2
Approach: We can solve this problem using the following formula:
Sn = 1 + 8 + 27 + 64 + .........up to n terms
Sn = (n*(n+1)/2)^2
Below is the implementation of above approach:
C++
// C++ program to find the sum of n terms#include <bits/stdc++.h>using namespace std;// Function to calculate the sumint calculateSum(int n){ // Return total sum return pow(n * (n + 1) / 2, 2);}// Driver codeint main(){ int n = 4; cout << calculateSum(n); return 0;} |
Java
// Java program to find the sum of n terms import java.io.*;class GFG {// Function to calculate the sum static int calculateSum(int n) { // Return total sum return (int)Math.pow(n * (n + 1) / 2, 2); } // Driver code public static void main (String[] args) { int n = 4; System.out.println( calculateSum(n)); }}// This code is contributed by inder_verma.. |
Python3
# Python3 program to find the # sum of n terms#Function to calculate the sumdef calculateSum(n): #return total sum return (n * (n + 1) / 2)**2 #Driver codeif __name__=='__main__': n = 4 print(calculateSum(n))#this code is contributed by Shashank_Sharma |
C#
// C# program to find the sum of n terms using System;class GFG {// Function ot calculate the sum static int calculateSum(int n) { // Return total sum return (int)Math.Pow(n * (n + 1) / 2, 2); } // Driver code public static void Main (){ int n = 4; Console.WriteLine(calculateSum(n)); }}// This code is contributed // by Akanksha Rai(Abby_akku) |
Javascript
<script>// javascript program to find the sum of n terms // Function to calculate the sum function calculateSum(n) { // Return total sum return parseInt(Math.pow(n * (n + 1) / 2, 2)); } // Driver code var n = 4; document.write( calculateSum(n)); // This code contributed by shikhasingrajput </script> |
PHP
<?php// PHP program to find // the sum of n terms // Function to calculate the sum function calculateSum($n){ // Return total sum return pow($n * ($n + 1) / 2 , 2); } // Driver code$n = 4;echo calculateSum($n); // This code is contributed// by ANKITRAI1?> |
Output
100
Time complexity: O(logn) because using inbuilt function pow
Auxiliary Space: O(1)
Using Loop:
Approach:
- Define a function sum_of_series_1 that takes an integer n as input.
- Initialize a variable sum to 0.
- Use a for loop that iterates over the range of n values.
- Inside the loop, add the cube of (i+1) to the variable sum.
- Return the value of sum after the loop completes.
C++
#include <iostream>// Function to calculate the sum of the series 1^3 + 2^3 +// 3^3 + ... + n^3int sumOfSeries(int n){ int sum = 0; for (int i = 0; i < n; i++) { sum += (i + 1) * (i + 1) * (i + 1); // Calculate the cube of each // number and add to the sum } return sum;}int main(){ std::cout << sumOfSeries(4) << std::endl; // Output: 100 std::cout << sumOfSeries(2) << std::endl; // Output: 9 return 0;} |
Python3
def sum_of_series_1(n): sum = 0 for i in range(n): sum += (i+1)**3 return sum# Example usage:print(sum_of_series_1(4)) # Output: 100print(sum_of_series_1(2)) # Output: 9 |
Output
100 9
The time complexity of this approach is O(n) because we use a loop that iterates over n values.
The space complexity is O(1) because we use only one variable sum.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



