Permutations of n things taken r at a time with k things together

Given n, r, and K. The task is to find the number of permutations of n    different things taken r    at a time such that k    specific things always occur together.

Examples:  

Input : n = 8, r = 5, k = 2
Output : 960
Input : n = 6, r = 2, k = 2
Output : 2 

Approach:  

  1. A bundle of k    specific things can be put in r places in (r – k + 1) ways .
  2. k specific things in the bundle can be arranged themselves into k! ways.
  3. Now (n – k) things will be arranged in (r – k) places in $n-k_{P_r-k}$    ways.

Thus, using the fundamental principle of counting, the required number of permutations will be: 
 

Permutations = k! \times (r-k+1) \times $n-k_{P_r-k}$
 

Below is the implementation of the above approach: 
 

C++




// CPP program to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find factorial
// of a number
int factorial(int n)
{
    int fact = 1;
 
    for (int i = 2; i <= n; i++)
        fact = fact * i;
 
    return fact;
}
 
// Function to calculate p(n, r)
int npr(int n, int r)
{
    int pnr = factorial(n) / factorial(n - r);
 
    return pnr;
}
 
// Function to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
int countPermutations(int n, int r, int k)
{
    return factorial(k) * (r - k + 1) * npr(n - k, r - k);
}
 
// Driver code
int main()
{
    int n = 8;
    int r = 5;
    int k = 2;
 
    cout << countPermutations(n, r, k);
 
    return 0;
}


Java




// Java program to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
 
class GFG{
// Function to find factorial
// of a number
static int factorial(int n)
{
    int fact = 1;
 
    for (int i = 2; i <= n; i++)
        fact = fact * i;
 
    return fact;
}
 
// Function to calculate p(n, r)
static int npr(int n, int r)
{
    int pnr = factorial(n) / factorial(n - r);
 
    return pnr;
}
 
// Function to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
static int countPermutations(int n, int r, int k)
{
    return factorial(k) * (r - k + 1) * npr(n - k, r - k);
}
 
// Driver code
public static void main(String[] args)
{
    int n = 8;
    int r = 5;
    int k = 2;
 
    System.out.println(countPermutations(n, r, k));
}
}
// this code is contributed by mits


Python3




# Python3 program to find the number of permutations of
# n different things taken r at a time
# with k things grouped together
 
# def to find factorial
# of a number
def factorial(n):
  
    fact = 1;
 
    for i in range(2,n+1):
        fact = fact * i;
 
    return fact;
  
 
# def to calculate p(n, r)
def npr(n, r):
  
    pnr = factorial(n) / factorial(n - r);
 
    return pnr;
  
 
# def to find the number of permutations of
# n different things taken r at a time
# with k things grouped together
def countPermutations(n, r, k):
  
    return int(factorial(k) * (r - k + 1) * npr(n - k, r - k));
  
 
# Driver code
n = 8;
r = 5;
k = 2;
 
print(countPermutations(n, r, k));
     
# this code is contributed by mits


C#




// C# program to find the number of
// permutations of n different things
// taken r at a time with k things
// grouped together
using System;
 
class GFG
{
     
// Function to find factorial
// of a number
static int factorial(int n)
{
    int fact = 1;
 
    for (int i = 2; i <= n; i++)
        fact = fact * i;
 
    return fact;
}
 
// Function to calculate p(n, r)
static int npr(int n, int r)
{
    int pnr = factorial(n) /
              factorial(n - r);
 
    return pnr;
}
 
// Function to find the number of
// permutations of n different
// things taken r at a time with
// k things grouped together
static int countPermutations(int n,
                             int r, int k)
{
    return factorial(k) * (r - k + 1) *
                    npr(n - k, r - k);
}
 
// Driver code
static void Main()
{
    int n = 8;
    int r = 5;
    int k = 2;
 
    Console.WriteLine(countPermutations(n, r, k));
}
}
 
// This code is contributed by mits


PHP




<?php
// PHP program to find the number
// of permutations of n different
// things taken r at a time
// with k things grouped together
 
// Function to find factorial
// of a number
function factorial($n)
{
    $fact = 1;
 
    for ($i = 2; $i <= $n; $i++)
        $fact = $fact * $i;
 
    return $fact;
}
 
// Function to calculate p(n, r)
function npr($n, $r)
{
    $pnr = factorial($n) /
           factorial($n - $r);
 
    return $pnr;
}
 
// Function to find the number of
// permutations of n different
// things taken r at a time
// with k things grouped together
function countPermutations($n, $r, $k)
{
    return factorial($k) * ($r - $k + 1) *
                   npr($n - $k, $r - $k);
}
 
// Driver code
$n = 8;
$r = 5;
$k = 2;
 
echo countPermutations($n, $r, $k);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// JavaScript program to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
 
// Function to find factorial
// of a number
function factorial(n)
{
    let fact = 1;
 
    for (let i = 2; i <= n; i++)
        fact = fact * i;
 
    return fact;
}
 
// Function to calculate p(n, r)
function npr(n, r)
{
    let pnr = Math.floor(factorial(n) / factorial(n - r));
 
    return pnr;
}
 
// Function to find the number of permutations of
// n different things taken r at a time
// with k things grouped together
 
function countPermutations(n, r, k)
{
    return factorial(k) * (r - k + 1) * npr(n - k, r - k);
}
 
// Driver code
    let n = 8;
    let r = 5;
    let k = 2;
 
    document.write(countPermutations(n, r, k));
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output: 

960

 

Time Complexity: O(n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button