XOR Linked List – Reverse a Linked List in groups of given size

Given a XOR linked list and an integer K, the task is to reverse every K nodes in the given XOR linked list.
Examples:
Input: XLL = 7< – > 6 < – > 8 < – > 11 < – > 3, K = 3
Output: 8 < – > 6 < – > 7 < – > 3 < – > 11
Explanation:
Reversing first K(= 3) nodes modifies the Linked List to 8 < – > 6 < – > 7 < – > 11 < – > 3.
Reversing remaining nodes of the Linked List to 8 < – > 6 < – > 7 < – > 3 < – > 11.
Therefore, the required output is 8 < – > 6 < – > 7 < – > 3 < – > 11.Input: XLL = 7 < – > 6 < – > 8 < –> 11 < – > 3 < – > 1 < – > 2 < – > 0, K = 3
Output: 8 < – > 6 < – > 7 < – > 1 < – > 3 < – > 11 < – > 0 < – > 2
Approach: The idea is to recursively reverse every K nodes of the XOR linked list in a group and connect the first node of every group of K nodes to the last node of its previous group of nodes. The recursive function is as follows:
RevInGrp(head, K, N)
{
reverse(head, min(K, N))
if (N < K) {
return head
}
head->next = RevGInGrp(next, K, N – K)
}
Follow the steps below to solve the problem:
- Reverse the first K nodes of the XOR linked list and recursively reverse the remaining nodes in a group of size K. If the count of remaining nodes is less than K, then just reverse the remaining nodes.
- Finally, connect the first node of every group to the last node of its previous group.
Below is the implementation of the above approach:
C++
// C++ program to implement// the above approach#include <bits/stdc++.h>#include <inttypes.h>using namespace std;// Structure of a node// in XOR linked liststruct Node { // Stores data value // of a node int data; // Stores XOR of previous // pointer and next pointer struct Node* nxp;};// Function to find the XOR of address// of two nodesstruct Node* XOR(struct Node* a, struct Node* b){ return (struct Node*)((uintptr_t)(a) ^ (uintptr_t)(b));}// Function to insert a node with// given value at given positionstruct Node* insert(struct Node** head, int value){ // If XOR linked list is empty if (*head == NULL) { // Initialize a new Node struct Node* node = new Node; // Stores data value in // the node node->data = value; // Stores XOR of previous // and next pointer node->nxp = XOR(NULL, NULL); // Update pointer of head node *head = node; } // If the XOR linked list // is not empty else { // Stores the address // of current node struct Node* curr = *head; // Stores the address // of previous node struct Node* prev = NULL; // Initialize a new Node struct Node* node = new Node(); // Update curr node address curr->nxp = XOR(node, XOR(NULL, curr->nxp)); // Update new node address node->nxp = XOR(NULL, curr); // Update head *head = node; // Update data value of // current node node->data = value; } return *head;}// Function to print elements of// the XOR Linked Listvoid printList(struct Node** head){ // Stores XOR pointer // in current node struct Node* curr = *head; // Stores XOR pointer of // in previous Node struct Node* prev = NULL; // Stores XOR pointer of // in next node struct Node* next; // Traverse XOR linked list while (curr != NULL) { // Print current node cout << curr->data << " "; // Forward traversal next = XOR(prev, curr->nxp); // Update prev prev = curr; // Update curr curr = next; }}// Reverse the linked list in group of Kstruct Node* RevInGrp(struct Node** head, int K, int len){ // Stores head node struct Node* curr = *head; // If the XOR linked // list is empty if (curr == NULL) return NULL; // Stores count of nodes // reversed in current group int count = 0; // Stores XOR pointer of // in previous Node struct Node* prev = NULL; // Stores XOR pointer of // in next node struct Node* next; // Reverse nodes in current group while (count < K && count < len) { // Forward traversal next = XOR(prev, curr->nxp); // Update prev prev = curr; // Update curr curr = next; // Update count count++; } // Disconnect prev node from the next node prev->nxp = XOR(NULL, XOR(prev->nxp, curr)); // Disconnect curr from previous node if (curr != NULL) curr->nxp = XOR(XOR(curr->nxp, prev), NULL); // If the count of remaining // nodes is less than K if (len < K) { return prev; } else { // Update len len -= K; // Recursively process the next nodes struct Node* dummy = RevInGrp(&curr, K, len); // Connect the head pointer with the prev (*head)->nxp = XOR(XOR(NULL, (*head)->nxp), dummy); // Connect prev with the head if (dummy != NULL) dummy->nxp = XOR(XOR(dummy->nxp, NULL), *head); return prev; }}// Driver Codeint main(){ /* Create following XOR Linked List head-->7<–>6<–>8<–>11<–>3<–>1<–>2<–>0*/ struct Node* head = NULL; insert(&head, 0); insert(&head, 2); insert(&head, 1); insert(&head, 3); insert(&head, 11); insert(&head, 8); insert(&head, 6); insert(&head, 7); // Function Call head = RevInGrp(&head, 3, 8); // Print the reversed list printList(&head); return (0);}// This code is contributed by pankajsharmagfg. |
C
// C program to implement// the above approach#include <inttypes.h>#include <stdio.h>#include <stdlib.h>// Structure of a node// in XOR linked liststruct Node { // Stores data value // of a node int data; // Stores XOR of previous // pointer and next pointer struct Node* nxp;};// Function to find the XOR of address// of two nodesstruct Node* XOR(struct Node* a, struct Node* b){ return (struct Node*)((uintptr_t)(a) ^ (uintptr_t)(b));}// Function to insert a node with// given value at given positionstruct Node* insert(struct Node** head, int value){ // If XOR linked list is empty if (*head == NULL) { // Initialize a new Node struct Node* node = (struct Node*)malloc( sizeof(struct Node)); // Stores data value in // the node node->data = value; // Stores XOR of previous // and next pointer node->nxp = XOR(NULL, NULL); // Update pointer of head node *head = node; } // If the XOR linked list // is not empty else { // Stores the address // of current node struct Node* curr = *head; // Stores the address // of previous node struct Node* prev = NULL; // Initialize a new Node struct Node* node = (struct Node*)malloc( sizeof(struct Node)); // Update curr node address curr->nxp = XOR(node, XOR(NULL, curr->nxp)); // Update new node address node->nxp = XOR(NULL, curr); // Update head *head = node; // Update data value of // current node node->data = value; } return *head;}// Function to print elements of// the XOR Linked Listvoid printList(struct Node** head){ // Stores XOR pointer // in current node struct Node* curr = *head; // Stores XOR pointer of // in previous Node struct Node* prev = NULL; // Stores XOR pointer of // in next node struct Node* next; // Traverse XOR linked list while (curr != NULL) { // Print current node printf("%d ", curr->data); // Forward traversal next = XOR(prev, curr->nxp); // Update prev prev = curr; // Update curr curr = next; }}// Reverse the linked list in group of Kstruct Node* RevInGrp(struct Node** head, int K, int len){ // Stores head node struct Node* curr = *head; // If the XOR linked // list is empty if (curr == NULL) return NULL; // Stores count of nodes // reversed in current group int count = 0; // Stores XOR pointer of // in previous Node struct Node* prev = NULL; // Stores XOR pointer of // in next node struct Node* next; // Reverse nodes in current group while (count < K && count < len) { // Forward traversal next = XOR(prev, curr->nxp); // Update prev prev = curr; // Update curr curr = next; // Update count count++; } // Disconnect prev node from the next node prev->nxp = XOR(NULL, XOR(prev->nxp, curr)); // Disconnect curr from previous node if (curr != NULL) curr->nxp = XOR(XOR(curr->nxp, prev), NULL); // If the count of remaining // nodes is less than K if (len < K) { return prev; } else { // Update len len -= K; // Recursively process the next nodes struct Node* dummy = RevInGrp(&curr, K, len); // Connect the head pointer with the prev (*head)->nxp = XOR(XOR(NULL, (*head)->nxp), dummy); // Connect prev with the head if (dummy != NULL) dummy->nxp = XOR(XOR(dummy->nxp, NULL), *head); return prev; }}// Driver Codeint main(){ /* Create following XOR Linked List head-->7<–>6<–>8<–>11<–>3<–>1<–>2<–>0*/ struct Node* head = NULL; insert(&head, 0); insert(&head, 2); insert(&head, 1); insert(&head, 3); insert(&head, 11); insert(&head, 8); insert(&head, 6); insert(&head, 7); // Function Call head = RevInGrp(&head, 3, 8); // Print the reversed list printList(&head); return (0);} |
8 6 7 1 3 11 0 2
Time Complexity: O(N)
Auxiliary Space: O(N / K)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



