Check if a number is Primorial Prime or not

Given a positive number N, the task is to check if N is a primorial prime number or not. Print ‘YES’ if N is a primorial prime number otherwise print ‘NO.
Primorial Prime: In Mathematics, A Primorial prime is a prime number of the form pn# + 1 or pn# – 1 , where pn# is the primorial of pn i.e the product of first n prime numbers.
Examples:
Input : N = 5 Output : YES 5 is Primorial prime of the form pn - 1 for n=2, Primorial is 2*3 = 6 and 6-1 =5. Input : N = 31 Output : YES 31 is Primorial prime of the form pn + 1 for n=3, Primorial is 2*3*5 = 30 and 30+1 = 31.
The First few Primorial primes are:
2, 3, 5, 7, 29, 31, 211, 2309, 2311, 30029
Prerequisite:
Approach:
- Generate all prime number in the range using Sieve of Eratosthenes.
- Check if n is prime or not, If n is not prime Then print No
- Else, starting from first prime (i.e 2 ) start multiplying next prime number and keep checking if product + 1 = n or product – 1 = n or not
- If either product+1=n or product-1=n, then n is a Primorial Prime Otherwise not.
Below is the implementation of above approach:
C++
// CPP program to check Primorial Prime#include <bits/stdc++.h>using namespace std;#define MAX 10000vector<int> arr;bool prime[MAX];// Function to generate prime numbersvoid SieveOfEratosthenes(){ // Create a boolean array "prime[0..n]" and initialize // make all entries of boolean array 'prime' // as true. A value in prime[i] will // finally be false if i is Not a prime, else true. memset(prime, true, sizeof(prime)); for (int p = 2; p * p < MAX; p++) { // If prime[p] is not changed, then it is a prime if (prime[p] == true) { // Update all multiples of p for (int i = p * 2; i < MAX; i += p) prime[i] = false; } } // store all prime numbers // to vector 'arr' for (int p = 2; p < MAX; p++) if (prime[p]) arr.push_back(p);}// Function to check the number for Primorial primebool isPrimorialPrime(long n){ // If n is not prime Number // return false if (!prime[n]) return false; long long product = 1; int i = 0; while (product < n) { // Multiply next prime number // and check if product + 1 = n or Product-1 =n // holds or not product = product * arr[i]; if (product + 1 == n || product - 1 == n) return true; i++; } return false;}// Driver codeint main(){ SieveOfEratosthenes(); long n = 31; // Check if n is Primorial Prime if (isPrimorialPrime(n)) cout << "YES\n"; else cout << "NO\n"; return 0;} |
Java
// Java program to check Primorial primeimport java.util.*;class GFG { static final int MAX = 1000000; static Vector<Integer> arr = new Vector<Integer>(); static boolean[] prime = new boolean[MAX]; // Function to get the prime numbers static void SieveOfEratosthenes() { // make all entries of boolean array 'prime' // as true. A value in prime[i] will // finally be false if i is Not a prime, else true. for (int i = 0; i < MAX; i++) prime[i] = true; for (int p = 2; p * p < MAX; p++) { // If prime[p] is not changed, then it is a prime if (prime[p] == true) { // Update all multiples of p for (int i = p * 2; i < MAX; i += p) prime[i] = false; } } // store all prime numbers // to vector 'arr' for (int p = 2; p < MAX; p++) if (prime[p]) arr.add(p); } // Function to check the number for Primorial prime static boolean isPrimorialPrime(int n) { // If n is not prime // Then return false if (!prime[n]) return false; long product = 1; int i = 0; while (product < n) { // Multiply next prime number // and check if product + 1 = n or product -1=n // holds or not product = product * arr.get(i); if (product + 1 == n || product - 1 == n) return true; i++; } return false; } // Driver Code public static void main(String[] args) { SieveOfEratosthenes(); int n = 31; if (isPrimorialPrime(n)) System.out.println("YES"); else System.out.println("NO"); }} |
Python 3
# Python3 Program to check Primorial Prime # from math lib import sqrt methodfrom math import sqrtMAX = 100000# Create a boolean array "prime[0..n]" # and initialize make all entries of # boolean array 'prime' as true. # A value in prime[i] will finally be # false if i is Not a prime, else true. prime = [True] * MAXarr = []# Utility function to generate# prime numbers def SieveOfEratosthenes() : for p in range(2, int(sqrt(MAX)) + 1) : # If prime[p] is not changed, # then it is a prime if prime[p] == True : # Update all multiples of p for i in range(p * 2 , MAX, p) : prime[i] = False # store all prime numbers # to list 'arr' for p in range(2, MAX) : if prime[p] : arr.append(p) # Function to check the number # for Primorial prime def isPrimorialPrime(n) : # If n is not prime Number # return false if not prime[n] : return False product, i = 1, 0 # Multiply next prime number # and check if product + 1 = n # or Product-1 = n holds or not while product < n : product *= arr[i] if product + 1 == n or product - 1 == n : return True i += 1 return False# Driver codeif __name__ == "__main__" : SieveOfEratosthenes() n = 31 # Check if n is Primorial Prime if (isPrimorialPrime(n)) : print("YES") else : print("NO") # This code is contributed by ANKITRAI1 |
C#
// c# program to check Primorial prime using System;using System.Collections.Generic;public class GFG{ public const int MAX = 1000000; public static List<int> arr = new List<int>(); public static bool[] prime = new bool[MAX]; // Function to get the prime numbers public static void SieveOfEratosthenes() { // make all entries of boolean array 'prime' // as true. A value in prime[i] will // finally be false if i is Not a prime, else true. for (int i = 0; i < MAX; i++) { prime[i] = true; } for (int p = 2; p * p < MAX; p++) { // If prime[p] is not changed, then it is a prime if (prime[p] == true) { // Update all multiples of p for (int i = p * 2; i < MAX; i += p) { prime[i] = false; } } } // store all prime numbers // to vector 'arr' for (int p = 2; p < MAX; p++) { if (prime[p]) { arr.Add(p); } } } // Function to check the number for Primorial prime public static bool isPrimorialPrime(int n) { // If n is not prime // Then return false if (!prime[n]) { return false; } long product = 1; int i = 0; while (product < n) { // Multiply next prime number // and check if product + 1 = n or product -1=n // holds or not product = product * arr[i]; if (product + 1 == n || product - 1 == n) { return true; } i++; } return false; } // Driver Code public static void Main(string[] args) { SieveOfEratosthenes(); int n = 31; if (isPrimorialPrime(n)) { Console.WriteLine("YES"); } else { Console.WriteLine("NO"); } }}// This code is contributed by Shrikant13 |
PHP
<?php// PHP Program to check Primorial Prime $MAX = 100000;// Create a boolean array "prime[0..n]" // and initialize make all entries of // boolean array 'prime' as true. // A value in prime[i] will finally be // false if i is Not a prime, else true. $prime = array_fill(0, $MAX, true);$arr = array();// Utility function to generate// prime numbers function SieveOfEratosthenes(){ global $MAX, $prime, $arr; for($p = 2; $p <= (int)(sqrt($MAX)); $p++) { // If prime[p] is not changed, // then it is a prime if ($prime[$p] == true) // Update all multiples of p for ($i = $p * 2; $i < $MAX; $i += $p) $prime[$i] = false; } // store all prime numbers // to list 'arr' for ($p = 2; $p < $MAX; $p++) if ($prime[$p]) array_push($arr, $p);} // Function to check the number // for Primorial prime function isPrimorialPrime($n){ global $MAX, $prime, $arr; // If n is not prime Number // return false if(!$prime[$n]) return false; $product = 1; $i = 0; // Multiply next prime number // and check if product + 1 = n // or Product-1 = n holds or not while ($product < $n) { $product *= $arr[$i]; if ($product + 1 == $n || $product - 1 == $n ) return true; $i += 1; } return false;}// Driver codeSieveOfEratosthenes();$n = 31;// Check if n is Primorial Prime if (isPrimorialPrime($n)) print("YES");else print("NO"); // This code is contributed by mits |
Javascript
<script>// Javascript program to check Primorial Primevar MAX = 10000;var arr = [];var prime = Array(MAX).fill(true);// Function to generate prime numbersfunction SieveOfEratosthenes(){ // Create a boolean array "prime[0..n]" and initialize // make all entries of boolean array 'prime' // as true. A value in prime[i] will // finally be false if i is Not a prime, else true. for (var p = 2; p * p < MAX; p++) { // If prime[p] is not changed, then it is a prime if (prime[p] == true) { // Update all multiples of p for (var i = p * 2; i < MAX; i += p) prime[i] = false; } } // store all prime numbers // to vector 'arr' for (var p = 2; p < MAX; p++) if (prime[p]) arr.push(p);}// Function to check the number for Primorial primefunction isPrimorialPrime(n){ // If n is not prime Number // return false if (!prime[n]) return false; var product = 1; var i = 0; while (product < n) { // Multiply next prime number // and check if product + 1 = n or Product-1 =n // holds or not product = product * arr[i]; if (product + 1 == n || product - 1 == n) return true; i++; } return false;}// Driver codeSieveOfEratosthenes();var n = 31;// Check if n is Primorial Primeif (isPrimorialPrime(n)) document.write( "YES");else document.write("NO");</script> |
Output:
YES
Time Complexity: O(n + MAX3/2)
Auxiliary Space: O(MAX)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



