Find foot of perpendicular from a point in 2 D plane to a Line

Given a point P in 2-D plane and equation of a line, the task is to find the foot of the perpendicular from P to the line.
Note: Equation of line is in form ax+by+c=0.
Examples:Â
Input : P=(1, 0), a = -1, b = 1, c = 0 Output : Q = (0.5, 0.5) The foot of perpendicular from point (1, 0) to line -x + y = 0 is (0.5, 0.5) Input : P=(3, 3), a = 0, b = 1, c = -2 Output : Q = (3, 2) The foot of perpendicular from point (3, 3) to line y-2 = 0 is (3, 2)
Since equation of the line is given to be of the form ax + by + c = 0. Equation of line passing through P and is perpendicular to line. Therefore equation of line passing through P and Q becomes ay – bx + d = 0. Also, P passes through line passing through P and Q, so we put coordinate of P in the above equation: Â
ay1 - bx1 + d = 0 or, d = bx1 - ay1
Also, Q is the intersection of the given line and the line passing through P and Q. So we can find the solution of:Â
ax + by + c = 0 and, ay - bx + (bx1-ay1) = 0
Since a, b, c, d all are known we can find x and y here as:Â Â
Below is the implementation of the above approach:
C++
// C++ program for implementation of// the above approach#include <iostream>using namespace std;Â
// Function to find foot of perpendicular from// a point in 2 D plane to a Linepair<double, double> findFoot(double a, double b, double c,                              double x1, double y1){    double temp = -1 * (a * x1 + b * y1 + c) / (a * a + b * b);    double x = temp * a + x1;    double y = temp * b + y1;    return make_pair(x, y);}Â
// Driver Codeint main(){    // Equation of line is    // ax + by + c = 0    double a = 0.0;    double b = 1.0;    double c = -2;Â
    // Coordinates of point p(x1, y1).    double x1 = 3.0;    double y1 = 3.0;Â
    pair<double, double> foot = findFoot(a, b, c, x1, y1);    cout << foot.first << " " << foot.second;Â
    return 0;} |
Java
import javafx.util.Pair;Â
// Java program for implementation of// the above approachclass GFG {Â
// Function to find foot of perpendicular from// a point in 2 D plane to a Linestatic Pair<Double, Double> findFoot(double a, double b, double c,                            double x1, double y1){    double temp = -1 * (a * x1 + b * y1 + c) / (a * a + b * b);    double x = temp * a + x1;    double y = temp * b + y1;    return new Pair(x, y);}Â
// Driver Codepublic static void main(String[] args) {    // Equation of line is    // ax + by + c = 0    double a = 0.0;    double b = 1.0;    double c = -2;Â
    // Coordinates of point p(x1, y1).    double x1 = 3.0;    double y1 = 3.0;Â
    Pair<Double, Double> foot = findFoot(a, b, c, x1, y1);    System.out.println(foot.getKey() + " " + foot.getValue());    }}Â
// This code contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach Â
# Function to find foot of perpendicular # from a point in 2 D plane to a Line def findFoot(a, b, c, x1, y1): Â
    temp = (-1 * (a * x1 + b * y1 + c) //                  (a * a + b * b))     x = temp * a + x1     y = temp * b + y1     return (x, y) Â
# Driver Code if __name__ == "__main__":Â
    # Equation of line is     # ax + by + c = 0     a, b, c = 0.0, 1.0, -2         # Coordinates of point p(x1, y1).     x1, y1 = 3.0, 3.0Â
    foot = findFoot(a, b, c, x1, y1)     print(int(foot[0]), int(foot[1]))          # This code is contributed# by Rituraj Jain |
C#
// C# program for implementation of // the above approach using System;Â
class GFG {     // Pair class    public class Pair    {        public double first,second;        public Pair(double a,double b)        {            first = a;            second = b;        }    }Â
// Function to find foot of perpendicular from // a point in 2 D plane to a Line static Pair findFoot(double a, double b, double c, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â double x1, double y1) { Â Â Â Â double temp = -1 * (a * x1 + b * y1 + c) / (a * a + b * b); Â Â Â Â double x = temp * a + x1; Â Â Â Â double y = temp * b + y1; Â Â Â Â return new Pair(x, y); } Â
// Driver Code public static void Main(String []args) {     // Equation of line is     // ax + by + c = 0     double a = 0.0;     double b = 1.0;     double c = -2; Â
    // Coordinates of point p(x1, y1).     double x1 = 3.0;     double y1 = 3.0; Â
    Pair foot = findFoot(a, b, c, x1, y1);     Console.WriteLine(foot.first + " " + foot.second);     } } Â
// This code contributed by Arnab Kundu |
PHP
<?php// PHP implementation of the approach Â
// Function to find foot of perpendicular // from a point in 2 D plane to a Line function findFoot($a, $b, $c, $x1, $y1){ Â
    $temp = floor((-1 * ($a * $x1 + $b * $y1 + $c) /                        ($a * $a + $b * $b)));    $x = $temp * $a + $x1;    $y = $temp * $b + $y1;    return array($x, $y);Â
}Â
// Driver Code Â
// Equation of line is // ax + by + c = 0 $a = 0.0;$b = 1.0 ;$c = -2 ;Â
// Coordinates of point p(x1, y1). $x1 = 3.0 ;$y1 = 3.0 ;Â
$foot = findFoot($a, $b, $c, $x1, $y1);echo floor($foot[0]), " ", floor($foot[1]);Â
// This code is contributed by Ryuga?> |
Javascript
<script>Â Â Â Â Â Â // JavaScript implementation of the approachÂ
      // Function to find foot of perpendicular      // from a point in 2 D plane to a Line      function findFoot(a, b, c, x1, y1) {        var temp = (-1 * (a * x1 + b * y1 + c)) / (a * a + b * b);        var x = temp * a + x1;        var y = temp * b + y1;        return [x, y];      }Â
      // Driver Code      // Equation of line is      // ax + by + c = 0      var a = 0.0;      var b = 1.0;      var c = -2;Â
      // Coordinates of point p(x1, y1).      var x1 = 3.0;      var y1 = 3.0;Â
      var foot = findFoot(a, b, c, x1, y1);      document.write(parseInt(foot[0]) + " " + parseInt(foot[1]));    </script> |
3 2
Â
Time Complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




