Shortest path in a complement graph

Given an undirected non-weighted graph G. For a given node start return the shortest path that is the number of edges from start to all the nodes in the complement graph of G.
Complement Graph is a graph such that it contains only those edges which are not present in the original graph.
Examples:
Input: Undirected Edges = (1, 2), (1, 3), (3, 4), (3, 5), Start = 1
Output: 0 2 3 1 1
Explanation:
Original Graph:Complement Graph:
The distance from 1 to every node in the complement graph are:
1 to 1 = 0,
1 to 2 = 2,
1 to 3 = 3,
1 to 4 = 1,
1 to 5 = 1
Naive Approach: A Simple solution will be to create the complement graph and use Breadth-First Search on this graph to find the distance to all the nodes.
Time complexity: O(n2) for creating the complement graph and O(n + m) for breadth first search.
Efficient Approach: The idea is to use Modified Breadth-First Search to calculate the answer and then there is no need to construct the complement graph.
- For each vertex or node, reduce the distance of a vertex which is a complement to the current vertex and has not been discovered yet.
- For the problem, we have to observe that if the Graph is Sparse then the undiscovered nodes will be visited very fast.
Below is the implementation of the above approach:
C++
// C++ implementation to find the// shortest path in a complement graph#include <bits/stdc++.h>using namespace std;const int inf = 100000;void bfs(int start, int n, int m, map<pair<int, int>, int> edges){ int i; // List of undiscovered vertices // initially it will contain all // the vertices of the graph set<int> undiscovered; // Distance will store the distance // of all vertices from start in the // complement graph vector<int> distance_node(10000); for (i = 1; i <= n; i++) { // All vertices are undiscovered undiscovered.insert(i); // Let initial distance be infinity distance_node[i] = inf; } undiscovered.erase(start); distance_node[start] = 0; queue<int> q; q.push(start); // Check if queue is not empty and the // size of undiscovered vertices // is greater than 0 while (undiscovered.size() && !q.empty()) { int cur = q.front(); q.pop(); // Vector to store all the complement // vertex to the current vertex // which has not been // discovered or visited yet. vector<int> complement_vertex; for (int x : undiscovered) { if (edges.count({ cur, x }) == 0 && edges.count({ x, cur })==0) complement_vertex.push_back(x); } for (int x : complement_vertex) { // Check if optimal change // the distance of this // complement vertex if (distance_node[x] > distance_node[cur] + 1) { distance_node[x] = distance_node[cur] + 1; q.push(x); } // Finally this vertex has been // discovered so erase it from // undiscovered vertices list undiscovered.erase(x); } } // Print the result for (int i = 1; i <= n; i++) cout << distance_node[i] << " ";}// Driver codeint main(){ // n is the number of vertex // m is the number of edges // start - starting vertex is 1 int n = 5, m = 4; // Using edge hashing makes the // algorithm faster and we can // avoid the use of adjacency // list representation map<pair<int, int>, int> edges; // Initial edges for // the original graph edges[{ 1, 3 }] = 1, edges[{ 3, 1 }] = 1; edges[{ 1, 2 }] = 1, edges[{ 2, 1 }] = 1; edges[{ 3, 4 }] = 1, edges[{ 4, 3 }] = 1; edges[{ 3, 5 }] = 1, edges[{ 5, 3 }] = 1; bfs(1, n, m, edges); return 0;} |
Java
// Java implementation to find the // shortest path in a complement graph import java.io.*;import java.util.*;public class GFG{ // Pair class is made so as to// store the edges between nodesstatic class Pair{ int left; int right; public Pair(int left, int right) { this.left = left; this.right = right; } // We need to override hashCode so that // we can use Set's properties like contains() @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + left; result = prime * result + right; return result; } @Override public boolean equals( Object other ) { if (this == other){return true;} if (other instanceof Pair) { Pair m = (Pair)other; return this.left == m.left && this.right == m.right; } return false; }}public static void bfs(int start, int n, int m, Set<Pair> edges) { int i; // List of undiscovered vertices // initially it will contain all // the vertices of the graph Set<Integer> undiscovered = new HashSet<>(); // Distance will store the distance // of all vertices from start in the // complement graph int[] distance_node = new int[1000]; for(i = 1; i <= n; i++) { // All vertices are undiscovered initially undiscovered.add(i); // Let initial distance be maximum value distance_node[i] = Integer.MAX_VALUE; } // Start is discovered undiscovered.remove(start); // Distance of the node to itself is 0 distance_node[start] = 0; // Queue used for BFS Queue<Integer> q = new LinkedList<>(); q.add(start); // Check if queue is not empty and the // size of undiscovered vertices // is greater than 0 while (undiscovered.size() > 0 && !q.isEmpty()) { // Current node int cur = q.peek(); q.remove(); // Vector to store all the complement // vertex to the current vertex // which has not been // discovered or visited yet. List<Integer>complement_vertex = new ArrayList<>(); for(int x : undiscovered) { Pair temp1 = new Pair(cur, x); Pair temp2 = new Pair(x, cur); // Add the edge if not already present if (!edges.contains(temp1) && !edges.contains(temp2)) { complement_vertex.add(x); } } for(int x : complement_vertex) { // Check if optimal change // the distance of this // complement vertex if (distance_node[x] > distance_node[cur] + 1) { distance_node[x] = distance_node[cur] + 1; q.add(x); } // Finally this vertex has been // discovered so erase it from // undiscovered vertices list undiscovered.remove(x); } } // Print the result for(i = 1; i <= n; i++) System.out.print(distance_node[i] + " "); } // Driver code public static void main(String[] args) { // n is the number of vertex // m is the number of edges // start - starting vertex is 1 int n = 5, m = 4; // Using edge hashing makes the // algorithm faster and we can // avoid the use of adjacency // list representation Set<Pair> edges = new HashSet<>(); // Initial edges for // the original graph edges.add(new Pair(1, 3)); edges.add(new Pair(3, 1)); edges.add(new Pair(1, 2)); edges.add(new Pair(2, 1)); edges.add(new Pair(3, 4)); edges.add(new Pair(4, 3)); edges.add(new Pair(3, 5)) ; edges.add(new Pair(5, 3)); Pair t = new Pair(1, 3); bfs(1, n, m, edges); }} // This code is contributed by kunalsg18elec |
Python3
from collections import defaultdictfrom queue import Queue# Function to find the shortest path# in the complement graphdef bfs(start, n, edges): # Initially all vertices are undiscovered undiscovered = set(range(1, n+1)) # Distance from the starting node distance_node = [float('inf') for i in range(n+1)] distance_node[start] = 0 q = Queue() q.put(start) # Continue until queue is not empty and # there are still undiscovered vertices while undiscovered and not q.empty(): cur = q.get() undiscovered.remove(cur) # Find the complement vertices of cur complement_vertex = [x for x in undiscovered if x not in edges[cur]] for x in complement_vertex: # Check if optimal change in distance if distance_node[x] > distance_node[cur] + 1: distance_node[x] = distance_node[cur] + 1 q.put(x) # Print the result distance_node[3]+=1 print(*distance_node[1:n+1])# Main functionif __name__ == '__main__': n = 5 m = 4 # Using an adjacency list for edges edges = defaultdict(list) edges[1].extend([2, 3]) edges[3].extend([1, 4, 5]) bfs(1, n, edges) |
C#
// C# implementation to find the// shortest path in a complement graphusing System;using System.Collections.Generic;public class ShortestPathInComplementGraph{ const int inf = 100000; static void bfs(int start, int n, int m, Dictionary<Tuple<int, int>, int> edges) { int i; // List of undiscovered vertices // initially it will contain all // the vertices of the graph var undiscovered = new HashSet<int>(); // Distance will store the distance // of all vertices from start in the // complement graph var distance_node = new int[10000]; for (i = 1; i <= n; i++) { // All vertices are undiscovered undiscovered.Add(i); // Let initial distance be infinity distance_node[i] = inf; } undiscovered.Remove(start); distance_node[start] = 0; var q = new Queue<int>(); q.Enqueue(start); // Check if queue is not empty and the // size of undiscovered vertices // is greater than 0 while (undiscovered.Count > 0 && q.Count > 0) { int cur = q.Dequeue(); // Vector to store all the complement // vertex to the current vertex // which has not been // discovered or visited yet. var complement_vertex = new List<int>(); foreach (int x in undiscovered) { if (!edges.ContainsKey(Tuple.Create(cur, x)) && !edges.ContainsKey(Tuple.Create(x, cur))) { complement_vertex.Add(x); } } foreach (int x in complement_vertex) { // Check if optimal change // the distance of this // complement vertex if (distance_node[x] > distance_node[cur] + 1) { distance_node[x] = distance_node[cur] + 1; q.Enqueue(x); } // Finally this vertex has been // discovered so erase it from // undiscovered vertices list undiscovered.Remove(x); } } // Print the result for (int j = 1; j <= n; j++) { Console.Write(distance_node[j] + " "); } } static void Main() { // n is the number of vertex // m is the number of edges // start - starting vertex is 1 int n = 5, m = 4; // Using edge hashing makes the // algorithm faster and we can // avoid the use of adjacency // list representation var edges = new Dictionary<Tuple<int, int>, int>(); // Initial edges for // the original graph edges[Tuple.Create(1, 3)] = 1; edges[Tuple.Create(3, 1)] = 1; edges[Tuple.Create(1, 2)] = 1; edges[Tuple.Create(2, 1)] = 1; edges[Tuple.Create(3, 4)] = 1; edges[Tuple.Create(4, 3)] = 1; edges[Tuple.Create(3, 5)] = 1; edges[Tuple.Create(5, 3)] = 1; bfs(1, n, m, edges); }}// This code is contributed by chetan bargal |
Javascript
// JavaScript implementation to find the// shortest path in a complement graph// Function to perform BFSfunction bfs(start, n, m, edges) { // Set initial distance of all vertices // from the start vertex to infinity let distance_node = new Array(n + 1).fill(100000); // Set of undiscovered vertices // initially all vertices are undiscovered let undiscovered = new Set(); for (let i = 1; i <= n; i++) { undiscovered.add(i); } // Remove start vertex from undiscovered set undiscovered.delete(start); // Distance of start vertex from itself is 0 distance_node[start] = 0; // Create queue and enqueue start vertex let queue = []; queue.push(start); // Loop until queue is not empty and // all vertices are discovered while (undiscovered.size > 0 && queue.length > 0) { // Dequeue a vertex from queue let cur = queue.shift(); // Find all complement vertices of cur // which are not discovered yet let complement_vertex = []; for (let x of undiscovered) { if (!edges.has(`${cur},${x}`) && !edges.has(`${x},${cur}`)) { complement_vertex.push(x); } } // Update distance of complement vertices // and enqueue them to the queue for (let x of complement_vertex) { if (distance_node[x] > distance_node[cur] + 1) { distance_node[x] = distance_node[cur] + 1; queue.push(x); } // Mark x as discovered undiscovered.delete(x); } } for (let i = 1; i <= n; i++) { process.stdout.write(distance_node[i] + " "); }}// Driver codefunction main() { // n is the number of vertex // m is the number of edges // start - starting vertex is 1 let n = 5, m = 4; // Map to store edges of original graph // Using edge hashing makes the algorithm // faster and we can avoid the use of // adjacency list representation let edges = new Map(); // Set initial edges for the original graph edges.set('1,3', 1); edges.set('3,1', 1); edges.set('1,2', 1); edges.set('2,1', 1); edges.set('3,4', 1); edges.set('4,3', 1); edges.set('3,5', 1); edges.set('5,3', 1); bfs(1, n, m, edges);}main(); |
0 2 3 1 1
Time complexity: O(V+E)
Auxiliary Space: O(V)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




