Length of the longest subsequence such that xor of adjacent elements is non-decreasing

Given a sequence arr of N positive integers, the task is to find the length of the longest subsequence such that xor of adjacent integers in the subsequence must be non-decreasing.
Examples:Â
Input: N = 8, arr = {1, 100, 3, 64, 0, 5, 2, 15}Â
Output: 6Â
The subsequence of maximum length is {1, 3, 0, 5, 2, 15}Â
with XOR of adjacent elements as {2, 3, 5, 7, 13}
Input: N = 3, arr = {1, 7, 10}Â
Output: 3Â
The subsequence of maximum length is {1, 3, 7}Â
with XOR of adjacent elements as {2, 4}.Â
Approach:Â
- This problem can be solved using dynamic programming where dp[i] will store the length of the longest valid subsequence that ends at index i.
- First, store the xor of all the pairs of elements i.e. arr[i] ^ arr[j] and the pair (i, j) also and then sort them according to the value of xor as they need to be non-decreasing.
- Now if the pair (i, j) is considered then the length of the longest subsequence that ends at j will be max(dp[j], 1 + dp[i]). In this way, calculate the maximum possible value of dp[] array for each position and then take the maximum of them.
Below is the implementation of the above approach:Â
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;Â
// Function to find the length of the longest// subsequence such that the XOR of adjacent// elements in the subsequence must// be non-decreasingint LongestXorSubsequence(int arr[], int n){Â
    vector<pair<int, pair<int, int> > > v;Â
    for (int i = 0; i < n; i++) {        for (int j = i + 1; j < n; j++) {Â
            // Computing xor of all the pairs            // of elements and store them            // along with the pair (i, j)            v.push_back(make_pair(arr[i] ^ arr[j],                                  make_pair(i, j)));        }    }Â
    // Sort all possible xor values    sort(v.begin(), v.end());Â
    int dp[n];Â
    // Initialize the dp array    for (int i = 0; i < n; i++) {        dp[i] = 1;    }Â
    // Calculating the dp array    // for each possible position    // and calculating the max length    // that ends at a particular index    for (auto i : v) {        dp[i.second.second]            = max(dp[i.second.second],                  1 + dp[i.second.first]);    }Â
    int ans = 1;Â
    // Taking maximum of all position    for (int i = 0; i < n; i++)        ans = max(ans, dp[i]);Â
    return ans;}Â
// Driver codeint main(){Â
    int arr[] = { 2, 12, 6, 7, 13, 14, 8, 6 };    int n = sizeof(arr) / sizeof(arr[0]);Â
    cout << LongestXorSubsequence(arr, n);Â
    return 0;} |
Java
// Java implementation of the approachimport java.io.*;import java.util.*;import java.util.stream.Collectors;Â
class GFG {    // Function to find the length of the longest    // subsequence such that the XOR of adjacent    // elements in the subsequence must    // be non-decreasing    static int LongestXorSubsequence(int[] arr, int n)    {Â
        List<int[]> v = new ArrayList<>();Â
        for (int i = 0; i < n; i++) {            for (int j = i + 1; j < n; j++) {Â
                // Computing xor of all the pairs                // of elements and store them                // along with the pair (i, j)                int[] l1 = { arr[i] ^ arr[j], i, j };                v.add(l1);            }        }Â
        // Sort all possible xor values        Comparator<int[]> byFirstElement            = (int[] a, int[] b) -> a[0] - b[0];Â
        List<int[]> v1 = v.stream()                             .sorted(byFirstElement)                             .collect(Collectors.toList());Â
        int[] dp = new int[n];Â
        // Initialize the dp array        for (int i = 0; i < n; i++) {            dp[i] = 1;        }Â
        // Calculating the dp array        // for each possible position        // and calculating the max length        // that ends at a particular index        Iterator<int[]> iter = v1.iterator();        while (iter.hasNext()) {            int[] list = iter.next();            dp[list[2]]                = Math.max(dp[list[2]], 1 + dp[list[1]]);        }Â
        int ans = 1;Â
        // Taking maximum of all position        for (int i = 0; i < n; i++)            ans = Math.max(ans, dp[i]);Â
        return ans;    }    public static void main(String[] args)    {        // Driver code        int[] arr = { 2, 12, 6, 7, 13, 14, 8, 6 };        int n = arr.length;Â
        System.out.println(LongestXorSubsequence(arr, n));    }}Â
// this code is contributed by phasing17 |
Python3
# Python3 implementation of the approachÂ
# Function to find the length of the longest# subsequence such that the XOR of adjacent# elements in the subsequence must# be non-decreasingdef LongestXorSubsequence(arr, n):Â
    v = []Â
    for i in range(0, n):         for j in range(i + 1, n): Â
             # Computing xor of all the pairs            # of elements and store them            # along with the pair (i, j)            v.append([(arr[i] ^ arr[j]), (i, j)])Â
        # v.push_back(make_pair(arr[i] ^ arr[j], make_pair(i, j)))             # Sort all possible xor values    v.sort()         # Initialize the dp array    dp = [1 for x in range(88)]Â
    # Calculating the dp array    # for each possible position    # and calculating the max length    # that ends at a particular index    for a, b in v:        dp[b[1]] = max(dp[b[1]], 1 + dp[b[0]])         ans = 1Â
    # Taking maximum of all position    for i in range(0, n):        ans = max(ans, dp[i])Â
    return ansÂ
# Driver codearr = [ 2, 12, 6, 7, 13, 14, 8, 6 ]n = len(arr)print(LongestXorSubsequence(arr, n))Â
# This code is contributed by Sanjit Prasad |
C#
// C# implementation of the approachusing System;using System.Linq;using System.Collections.Generic;Â
class GFG{Â
  // Function to find the length of the longest  // subsequence such that the XOR of adjacent  // elements in the subsequence must  // be non-decreasing  static int LongestXorSubsequence(int[] arr, int n)  {Â
    List<int[]> v = new List<int[]>();Â
    for (int i = 0; i < n; i++) {      for (int j = i + 1; j < n; j++) {Â
        // Computing xor of all the pairs        // of elements and store them        // along with the pair (i, j)        int[] l1 = { arr[i] ^ arr[j], i, j };        v.Add(l1);      }    }Â
    // Sorting the array by First Value    List<int[]> v1 = v.OrderBy(a => a[0])      .ThenBy(a => a[1])      .ToList();Â
    int[] dp = new int[n];Â
    // Initialize the dp array    for (int i = 0; i < n; i++) {      dp[i] = 1;    }Â
    // Calculating the dp array    // for each possible position    // and calculating the max length    // that ends at a particular index    foreach(var list in v1) dp[list[2]]      = Math.Max(dp[list[2]], 1 + dp[list[1]]);Â
    int ans = 1;Â
    // Taking maximum of all position    for (int i = 0; i < n; i++)      ans = Math.Max(ans, dp[i]);Â
    return ans;  }  public static void Main(string[] args)  {    // Driver code    int[] arr = { 2, 12, 6, 7, 13, 14, 8, 6 };    int n = arr.Length;Â
    Console.WriteLine(LongestXorSubsequence(arr, n));  }}Â
// This code is contributed by phasing17 |
Javascript
<script>// Javascript implementation of the approachÂ
// Function to find the length of the longest// subsequence such that the XOR of adjacent// elements in the subsequence must// be non-decreasingfunction LongestXorSubsequence(arr, n) {Â
    let v = [];Â
    for (let i = 0; i < n; i++) {        for (let j = i + 1; j < n; j++) {Â
            // Computing xor of all the pairs            // of elements and store them            // along with the pair (i, j)            v.push([arr[i] ^ arr[j], [i, j]]);        }    }Â
    // Sort all possible xor values    v.sort((a, b) => a[0] - b[0]);Â
    let dp = new Array(n);Â
    // Initialize the dp array    for (let i = 0; i < n; i++) {        dp[i] = 1;    }Â
    // Calculating the dp array    // for each possible position    // and calculating the max length    // that ends at a particular index    for (let i of v) {        dp[i[1][1]]            = Math.max(dp[i[1][1]],                1 + dp[i[1][0]]);    }Â
    let ans = 1;Â
    // Taking maximum of all position    for (let i = 0; i < n; i++)        ans = Math.max(ans, dp[i]);Â
    return ans;}Â
// Driver codelet arr = [2, 12, 6, 7, 13, 14, 8, 6];let n = arr.length;Â
document.write(LongestXorSubsequence(arr, n));Â
// This code is contributed by _saurabh_jaiswal.</script> |
Output
5
Time Complexity: O(N* N)
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



