Count number of coordinates from an array satisfying the given conditions

Given an array arr[] consisting of N coordinates in the Cartesian Plane, the task is to find the number of coordinates, such as (X, Y), that satisfies all the following conditions:
- All possible arr[i][0] must be less than X and arr[i][1] must be equal to Y.
- All possible arr[i][0] must be greater than X and arr[i][1] must be equal to Y.
- All possible arr[i][0] must be less than Y and arr[i][1] must be equal to X.
- All possible arr[i][0] must be greater than Y and arr[i][1] must be equal to X.
Examples:
Input: arr[][] = {{0, 0}, {0, 1}, {1, 0}, {0, -1}, {-1, 0}}
Output: 1
Explanation: There exists only one coordinate that satisfy the given condition, i.e. (0, 0), based on the following conditions:
- arr[2] = {1, 0}: Since arr[2][0](= 1) > X(= 0) and arr[2][1](= 0) == Y(= 0), condition 1 is satisfied.
- arr[4] = {-1, 0}: Since arr[4][0](= -1) < 0 and arr[4][1](= 0) == Y(= 0), condition 2 is satisfied.
- arr[1] = {0, 1}: Since arr[1][0](= 0) == X(= 0) and arr[1][1](= 1) > Y(= 0), condition 3 is satisfied.
- arr[3] = {0, -1}: Since arr[3][0](= 0) == X(= 0) and arr[3][1](= -1) < Y(= 0), condition 4 is satisfied.
Therefore, the total number of points is 1.
Input: arr[][] = {{1, 0}, {2, 0}, {1, 1}, {1, -1}}
Output: 0
Approach: The given problem can be solved by considering every coordinate, say (arr[i][0], arr[i][1]) as the resultant coordinates, and if the coordinate (arr[i][0], arr[i][1]) satisfies all the given conditions, then count the current coordinates. After checking for all the coordinates, print the value of the total count obtained.
Below is the implementation of the above approach:
C++
// C++ program for the above approachÂ
#include <bits/stdc++.h>using namespace std;Â
// Function to count the number of// coordinates from a given set// that satisfies the given conditionsint centralPoints(int arr[][2], int N){    // Stores the count of central points    int count = 0;Â
    // Store the count of    // each x and y coordinates    int c1, c2, c3, c4;Â
    // Find all possible pairs    for (int i = 0; i < N; i++) {Â
        // Initialize variables c1, c2,        // c3, c4 to define the status        // of conditions        c1 = 0, c2 = 0, c3 = 0;        c4 = 0;Â
        // Stores value of each point        int x = arr[i][0];        int y = arr[i][1];Â
        // Check the conditions for        // each point by generating        // all possible pairs        for (int j = 0; j < N; j++) {Â
            // If arr[j][0] > x and            // arr[j][1] == y            if (arr[j][0] > x                && arr[j][1] == y) {                c1 = 1;            }Â
            // If arr[j][0] < x and            // arr[j][1] == y            if (arr[j][1] > y                && arr[j][0] == x) {                c2 = 1;            }Â
            // If arr[j][1] > y and            // arr[j][0] == x            if (arr[j][0] < x                && arr[j][1] == y) {                c3 = 1;            }Â
            // If arr[j][1] < y and            // arr[j][0] == x            if (arr[j][1] < y                && arr[j][0] == x) {                c4 = 1;            }        }Â
        // If all conditions satisfy        // then point is central point        if (c1 + c2 + c3 + c4 == 4) {Â
            // Increment the count by 1            count++;        }    }Â
    // Return the count    return count;}Â
// Driver Codeint main(){Â Â Â Â int arr[4][2] = { { 1, 0 }, { 2, 0 }, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â { 1, 1 }, { 1, -1 } };Â Â Â Â int N = sizeof(arr) / sizeof(arr[0]);Â Â Â Â cout << centralPoints(arr, N);Â
    return 0;} |
Java
// Java program for the above approachimport java.io.*;import java.lang.*;import java.util.*;Â
public class GFG {Â
    // Function to count the number of    // coordinates from a given set    // that satisfies the given conditions    static int centralPoints(int arr[][], int N)    {               // Stores the count of central points        int count = 0;Â
        // Store the count of        // each x and y coordinates        int c1, c2, c3, c4;Â
        // Find all possible pairs        for (int i = 0; i < N; i++) {Â
            // Initialize variables c1, c2,            // c3, c4 to define the status            // of conditions            c1 = 0;            c2 = 0;            c3 = 0;            c4 = 0;Â
            // Stores value of each point            int x = arr[i][0];            int y = arr[i][1];Â
            // Check the conditions for            // each point by generating            // all possible pairs            for (int j = 0; j < N; j++) {Â
                // If arr[j][0] > x and                // arr[j][1] == y                if (arr[j][0] > x && arr[j][1] == y) {                    c1 = 1;                }Â
                // If arr[j][0] < x and                // arr[j][1] == y                if (arr[j][1] > y && arr[j][0] == x) {                    c2 = 1;                }Â
                // If arr[j][1] > y and                // arr[j][0] == x                if (arr[j][0] < x && arr[j][1] == y) {                    c3 = 1;                }Â
                // If arr[j][1] < y and                // arr[j][0] == x                if (arr[j][1] < y && arr[j][0] == x) {                    c4 = 1;                }            }Â
            // If all conditions satisfy            // then point is central point            if (c1 + c2 + c3 + c4 == 4) {Â
                // Increment the count by 1                count++;            }        }Â
        // Return the count        return count;    }       // Driver Code    public static void main(String[] args)    {Â
        int arr[][]            = { { 1, 0 }, { 2, 0 }, { 1, 1 }, { 1, -1 } };        int N = arr.length;        System.out.println(centralPoints(arr, N));    }}Â
// This code is contributed by Kingash. |
Python3
# Python3 program for the above approachÂ
# Function to count the number of# coordinates from a given set# that satisfies the given conditionsdef centralPoints(arr, N):         # Stores the count of central points    count = 0Â
    # Find all possible pairs    for i in range(N):                 # Initialize variables c1, c2,        # c3, c4 to define the status        # of conditions        c1 = 0        c2 = 0        c3 = 0        c4 = 0Â
        # Stores value of each point        x = arr[i][0]        y = arr[i][1]Â
        # Check the conditions for        # each point by generating        # all possible pairs        for j in range(N):                         # If arr[j][0] > x and            # arr[j][1] == y            if (arr[j][0] > x and arr[j][1] == y):                c1 = 1Â
            # If arr[j][0] < x and            # arr[j][1] == y            if (arr[j][1] > y and arr[j][0] == x):                c2 = 1Â
            # If arr[j][1] > y and            # arr[j][0] == x            if (arr[j][0] < x and arr[j][1] == y):                c3 = 1Â
            # If arr[j][1] < y and            # arr[j][0] == x            if (arr[j][1] < y and arr[j][0] == x):                c4 = 1Â
        # If all conditions satisfy        # then point is central point        if (c1 + c2 + c3 + c4 == 4):                         # Increment the count by 1            count += 1Â
    # Return the count    return countÂ
# Driver Codeif __name__ == '__main__':Â Â Â Â Â Â Â Â Â arr = [ [ 1, 0 ], [ 2, 0 ], Â Â Â Â Â Â Â Â Â Â Â Â [ 1, 1 ], [ 1, -1 ] ]Â Â Â Â N = len(arr)Â Â Â Â Â Â Â Â Â print(centralPoints(arr, N));Â
# This code is contributed by SURENDRA_GANGWAR |
C#
// C# program for the above approachusing System;Â
class GFG{Â
// Function to count the number of// coordinates from a given set// that satisfies the given conditionsstatic int centralPoints(int[,] arr, int N){         // Stores the count of central points    int count = 0;Â
    // Store the count of    // each x and y coordinates    int c1, c2, c3, c4;Â
    // Find all possible pairs    for(int i = 0; i < N; i++)     {                 // Initialize variables c1, c2,        // c3, c4 to define the status        // of conditions        c1 = 0;        c2 = 0;        c3 = 0;        c4 = 0;Â
        // Stores value of each point        int x = arr[i, 0];        int y = arr[i, 1];Â
        // Check the conditions for        // each point by generating        // all possible pairs        for(int j = 0; j < N; j++)        {                         // If arr[j][0] > x and            // arr[j][1] == y            if (arr[j, 0] > x && arr[j, 1] == y)             {                c1 = 1;            }Â
            // If arr[j][0] < x and            // arr[j][1] == y            if (arr[j, 1] > y && arr[j, 0] == x)             {                c2 = 1;            }Â
            // If arr[j][1] > y and            // arr[j][0] == x            if (arr[j, 0] < x && arr[j, 1] == y)             {                c3 = 1;            }Â
            // If arr[j][1] < y and            // arr[j][0] == x            if (arr[j, 1] < y && arr[j, 0] == x)             {                c4 = 1;            }        }Â
        // If all conditions satisfy        // then point is central point        if (c1 + c2 + c3 + c4 == 4)         {                         // Increment the count by 1            count++;        }    }Â
    // Return the count    return count;}Â
// Driver Codepublic static void Main(string[] args){Â Â Â Â int[,] arr = { { 1, 0 }, { 2, 0 }, Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â { 1, 1 }, { 1, -1 } };Â Â Â Â int N = arr.GetLength(0);Â Â Â Â Â Â Â Â Â Console.WriteLine(centralPoints(arr, N));}}Â
// This code is contributed by ukasp |
Javascript
<script>Â
// Javascript program to implement the // above approachÂ
    // Function to count the number of    // coordinates from a given set    // that satisfies the given conditions    function centralPoints(arr, N)    {                // Stores the count of central points        let count = 0;          // Store the count of        // each x and y coordinates        let c1, c2, c3, c4;          // Find all possible pairs        for (let i = 0; i < N; i++) {              // Initialize variables c1, c2,            // c3, c4 to define the status            // of conditions            c1 = 0;            c2 = 0;            c3 = 0;            c4 = 0;              // Stores value of each point            let x = arr[i][0];            let y = arr[i][1];              // Check the conditions for            // each point by generating            // all possible pairs            for (let j = 0; j < N; j++) {                  // If arr[j][0] > x and                // arr[j][1] == y                if (arr[j][0] > x && arr[j][1] == y) {                    c1 = 1;                }                  // If arr[j][0] < x and                // arr[j][1] == y                if (arr[j][1] > y && arr[j][0] == x) {                    c2 = 1;                }                  // If arr[j][1] > y and                // arr[j][0] == x                if (arr[j][0] < x && arr[j][1] == y) {                    c3 = 1;                }                  // If arr[j][1] < y and                // arr[j][0] == x                if (arr[j][1] < y && arr[j][0] == x) {                    c4 = 1;                }            }              // If all conditions satisfy            // then point is central point            if (c1 + c2 + c3 + c4 == 4) {                  // Increment the count by 1                count++;            }        }          // Return the count        return count;    }Â
// Driver Code    let arr = [[ 1, 0 ], [ 2, 0 ], [ 1, 1 ], [ 1, -1 ]];    let N = arr.length;   document.write(centralPoints(arr, N));   // This code is contributed by splevel62.</script> |
0
Â
Time Complexity: O(N2)
Auxiliary Space: O(1), Â since no extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



