Find XOR sum of Bitwise AND of all pairs from given two Arrays

Given two arrays A and B of sizes N and M respectively, the task is to calculate the XOR sum of bitwise ANDs of all pairs of A and B
Examples:
Input: A={3, 5}, B={2, 3}, N=2, M=2
Output:
0
Explanation:
The answer is (3&2)^(3&3)^(5&2)^(5&3)=1^3^0^2=0.Input: A={1, 2, 3}, B={5, 6}, N=3, M=2
Output:
0
Naive Approach: The naive approach would be to use nested loops to calculate the bitwise ANDs of all pairs and then find their XOR sum. Follow the steps below to solve the problem:
- Initialize a variable ans to -1, which will store that final answer.
- Traverse array A, and do the following:
- For each current element, traverse the array B, and do the following:
- If ans is equal to -1, store the bitwise AND of the elements in ans.
- Otherwise, store the bitwise XOR of ans and the bitwise AND of the elements in ans.
- For each current element, traverse the array B, and do the following:
- Return ans.
Below is the implementation of the above approach:
C++
// C++ algorithm for the above approach#include <bits/stdc++.h>using namespace std;// Function to calculate the XOR sum of all ANDS of all// pairs on A[] and B[]int XorSum(int A[], int B[], int N, int M){    // variable to store anshu    int ans = -1;    for (int i = 0; i < N; i++) {        for (int j = 0; j < M; j++) {            // when there has been no            // AND of pairs before this            if (ans == -1)                ans = (A[i] & B[j]);            else                ans ^= (A[i] & B[j]);        }    }    return ans;}Â
// Driver codeint main(){    // Input    int A[] = { 3, 5 };    int B[] = { 2, 3 };    int N = sizeof(A) / sizeof(A[0]);    int M = sizeof(B) / sizeof(B[0]);Â
    // Function call    cout << XorSum(A, B, N, M) << endl;} |
Java
// Java program for the above approachimport java.io.*;class GFG{     // Function to calculate the XOR sum of all ANDS of all// pairs on A[] and B[]public static int XorSum(int A[], int B[], int N, int M){       // variable to store anshu    int ans = -1;    for (int i = 0; i < N; i++)     {        for (int j = 0; j < M; j++)         {                       // when there has been no            // AND of pairs before this            if (ans == -1)                ans = (A[i] & B[j]);            else                ans ^= (A[i] & B[j]);        }    }    return ans;}Â
// Driver code    public static void main (String[] args)     {                // Input    int A[] = { 3, 5 };    int B[] = { 2, 3 };    int N = A.length;    int M =B.length;Â
    // Function call    System.out.println(XorSum(A, B, N, M));           }}Â
// This code is contributed by Potta Lokesh |
Python3
# Python3 algorithm for the above approachÂ
# Function to calculate the XOR sum of all ANDS of all# pairs on A and Bdef XorSum(A, B, N, M):       # variable to store anshu    ans = -1    for i in range(N):        for j in range(M):                       # when there has been no            # AND of pairs before this            if (ans == -1):                ans = (A[i] & B[j])            else:                ans ^= (A[i] & B[j])Â
    return ans   # Driver codeif __name__ == '__main__':       # Input    A = [3, 5]    B = [2, 3]Â
    N = len(A)    M = len(B)Â
    # Function call    print (XorSum(A, B, N, M))Â
# This code is contributed by mohit kumar 29. |
C#
// C# algorithm for the above approachusing System;using System.Collections.Generic;Â
class GFG{  // Function to calculate the XOR sum of all ANDS of all// pairs on A[] and B[]static int XorSum(int []A, int []B, int N, int M){       // variable to store anshu    int ans = -1;    for (int i = 0; i < N; i++)     {        for (int j = 0; j < M; j++)         {                       // when there has been no            // AND of pairs before this            if (ans == -1)                ans = (A[i] & B[j]);            else                ans ^= (A[i] & B[j]);        }    }    return ans;}Â
// Driver codepublic static void Main(){Â Â Â Â // Input]Â Â Â Â int []A = {3, 5};Â Â Â Â int []B = {2, 3};Â Â Â Â int N = A.Length;Â Â Â Â int M = B.Length;Â
    // Function call    Console.Write(XorSum(A, B, N, M));}}Â
// This code is contributed by SURENDER_GANGWAR. |
Javascript
<script>// JavaScript program for the above approachÂ
        // Function to calculate the XOR sum of all ANDS of all        // pairs on A[] and B[]        function XorSum(A, B, N, M)        {                     // variable to store anshu            let ans = -1;            for (let i = 0; i < N; i++)             {                for (let j = 0; j < M; j++)                 {                                     // when there has been no                    // AND of pairs before this                    if (ans == -1)                        ans = (A[i] & B[j]);                    else                        ans ^= (A[i] & B[j]);                }            }            return ans;        }Â
        // Driver codeÂ
        // Input        let A = [3, 5];        let B = [2, 3];        let N = A.length;        let M = B.length;Â
        // Function call        document.write(XorSum(A, B, N, M));Â
  // This code is contributed by Potta Lokesh    </script> |
0
Time Complexity: O(N*M)
Auxiliary Space:O(1)
Efficient Approach:
Observation: The distributive property of XOR over AND can be used to solve the problem.Â
let A[] = [a, b, c]Â
let B[] = [d, e]Â
Result :Â
(a & d) ^ (a & e) ^ (b & d) ^ (b & e) ^ (c & d) ^ (c & e)Â
By applying distributive property,Â
[(a ^ b ^ c) & d] ^ [(a ^ b ^ e) & e]Â
(a ^ b ^ c) & (d ^ e)Â
Â
Follow the steps below to solve the problem:Â
- Initialize two variables ans1 and ans2 to 0, which will store the bitwise XOR sums of the first array and the second array respectively.
- Traverse A and for each current element:
- Store the bitwise XOR of ans1 and the current element in ans1.
- Traverse B and for each current element:
- Store the bitwise XOR of ans2 and the current element in ans2.
- Return ans1&ans2.
Below is the implementation of the above approach:Â
C++14
// C++ algorithm for the above approach#include <bits/stdc++.h>using namespace std;// Function to calculate the XOR sum of all ANDS of all// pairs on A[] and B[]int XorSum(int A[], int B[], int N, int M){    // variable to store xor sums    // of first array and second    // array respectively.    int ans1 = 0, ans2 = 0;    // Xor sum of first array    for (int i = 0; i < N; i++)        ans1 = ans1 ^ A[i];    // Xor sum of second array    for (int i = 0; i < M; i++)        ans2 = ans2 ^ B[i];    // required answer    return (ans1 & ans2);}// Driver codeint main(){    // Input    int A[] = { 3, 5 };    int B[] = { 2, 3 };    int N = sizeof(A) / sizeof(A[0]);    int M = sizeof(B) / sizeof(B[0]);Â
    // Function call    cout << XorSum(A, B, N, M) << endl;} |
Java
// Java algorithm for the above approachimport java.io.*;Â
class GFG{Â
// Function to calculate the XOR sum of // all ANDS of all pairs on A[] and B[]static int XorSum(int A[], int B[], int N, int M){         // Variable to store xor sums    // of first array and second    // array respectively.    int ans1 = 0, ans2 = 0;         // Xor sum of first array    for(int i = 0; i < N; i++)        ans1 = ans1 ^ A[i];             // Xor sum of second array    for(int i = 0; i < M; i++)        ans2 = ans2 ^ B[i];             // Required answer    return (ans1 & ans2);}Â
// Driver codepublic static void main(String[] args){         // Input    int A[] = { 3, 5 };    int B[] = { 2, 3 };    int N = A.length;    int M = B.length;Â
    // Function call    System.out.print(XorSum(A, B, N, M));}}Â
// This code is contributed by subham348 |
Python3
# python 3 algorithm for the above approachÂ
# Function to calculate the XOR sum of all ANDS of all# pairs on A[] and B[]def XorSum(A, B, N, M):       # variable to store xor sums    # of first array and second    # array respectively.    ans1 = 0    ans2 = 0         # Xor sum of first array    for i in range(N):        ans1 = ans1 ^ A[i]             # Xor sum of second array    for i in range(M):        ans2 = ans2 ^ B[i]             # required answer    return (ans1 & ans2)Â
# Driver codeif __name__ == '__main__':       # Input    A = [3, 5]    B = [2, 3]    N = len(A)    M = len(B)Â
    # Function call    print(XorSum(A, B, N, M))         # This code is contributed by bgangwar59. |
C#
// C# program for the above approachÂ
using System;Â
class GFG {Â
// Function to calculate the XOR sum of // all ANDS of all pairs on A[] and B[]static int XorSum(int[] A, int[] B, int N, int M){         // Variable to store xor sums    // of first array and second    // array respectively.    int ans1 = 0, ans2 = 0;         // Xor sum of first array    for(int i = 0; i < N; i++)        ans1 = ans1 ^ A[i];             // Xor sum of second array    for(int i = 0; i < M; i++)        ans2 = ans2 ^ B[i];             // Required answer    return (ans1 & ans2);}Â
  // Driver code  public static void Main (String[] args)   {Â
    // Input    int[] A = { 3, 5 };    int[] B = { 2, 3 };    int N = A.Length;    int M = B.Length;Â
    // Function call    Console.Write(XorSum(A, B, N, M));  }}Â
// This code is contributed by code_hunt. |
Javascript
<script>Â
// JavaScript algorithm for the above approachÂ
// Function to calculate the XOR sum of all ANDS of all// pairs on A[] and B[]function XorSum(A, B, N, M){    // variable to store xor sums    // of first array and second    // array respectively.    let ans1 = 0, ans2 = 0;    // Xor sum of first array    for (let i = 0; i < N; i++)        ans1 = ans1 ^ A[i];    // Xor sum of second array    for (let i = 0; i < M; i++)        ans2 = ans2 ^ B[i];    // required answer    return (ans1 & ans2);}// Driver code    // Input    let A = [ 3, 5 ];    let B = [ 2, 3 ];    let N = A.length;    let M = B.length;Â
    // Function call    document.write(XorSum(A, B, N, M));Â
</script> |
0
Time Complexity: O(N+M)
Auxiliary Space: O(1)
Â
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!


