Perfect cube greater than a given number

Given a number N, the task is to find the next perfect cube greater than N.
Examples:
Input: N = 6 Output: 8 8 is a greater number than 6 and is also a perfect cube Input: N = 9 Output: 27
Approach:
- Find the cube root of given N.
- Calculate its floor value using floor function in C++.
- Then add 1 to it.
- Print cube of that number.
Below is the implementation of the above approach:
C++
// C++ implementation of above approach#include <cmath>#include <iostream>using namespace std;// Function to find the next perfect cubeint nextPerfectCube(int N){ int nextN = floor(cbrt(N)) + 1; return nextN * nextN * nextN;}// Driver Codeint main(){ int n = 35; cout << nextPerfectCube(n); return 0;} |
Java
//Java implementation of above approachimport java.util.*;import java.lang.*;import java.io.*;class GFG{ // Function to find the next perfect cubestatic int nextPerfectCube(int N){ int nextN = (int)Math.floor(Math.cbrt(N)) + 1; return nextN * nextN * nextN;} // Driver Codepublic static void main(String args[]){ int n = 35; System.out.print(nextPerfectCube(n));}} |
Python 3
# Python 3 implementation of above approach # from math import everythingfrom math import *# Function to find the next perfect cube def nextPerfectCube(N) : nextN = floor(N ** (1/3)) + 1 return nextN ** 3# Driver code if __name__ == "__main__" : n = 35 print(nextPerfectCube(n))# This code is contributed by ANKITRAI1 |
C#
// C# implementation of above approachusing System; class GFG{ // Function to find the next perfect cubestatic int nextPerfectCube(int N){ int nextN = (int)Math.Floor(Math.Pow(N, (double)1/3)) + 1; return nextN * nextN * nextN;}// Driver Codepublic static void Main(){ int n = 35; Console.Write(nextPerfectCube(n));}}// This code is contributed by ChitraNayal |
PHP
<?php// PHP implementation of above approach // from math import everything// Function to find the next perfect cube function nextPerfectCube($N){ $nextN = (int)(floor(pow($N,(1/3))) + 1); return $nextN * $nextN * $nextN ;}// Driver code $n = 35; print(nextPerfectCube($n));// This code is contributed by mits?> |
Javascript
<script>// Javascript implementation of above approach// Function to find the next perfect cubefunction nextPerfectCube(N){ let nextN = Math.floor(Math.cbrt(N)) + 1; return nextN * nextN * nextN;}// Driver Codelet n = 35;document.write(nextPerfectCube(n));</script> |
Output:
64
Time Complexity: O(logN) because it using cbrt function
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



