Check if each element of an Array is the Sum of any two elements of another Array

Given two arrays A[] and B[] consisting of N integers, the task is to check if each element of array B[] can be formed by adding any two elements of array A[]. If it is possible, then print “Yes”. Otherwise, print “No”.
Examples:
Input: A[] = {3, 5, 1, 4, 2}, B[] = {3, 4, 5, 6, 7}
Output: Yes
Explanation:
B[0] = 3 = (1 + 2) = A[2] + A[4],
B[1] = 4 = (1 + 3) = A[2] + A[0],
B[2] = 5 = (3 + 2) = A[0] + A[4],
B[3] = 6 = (2 + 4) = A[4] + A[3],
B[4] = 7 = (3 + 4) = A[0] + A[3]Input: A[] = {1, 2, 3, 4, 5}, B[] = {1, 2, 3, 4, 5}
Output: No
Approach:
Follow the steps below to solve the problem:
- Store each element of B[] in a Set.
- For each pair of indices (i, j) of the array A[], check if A[i] + A[j] is present in the set. If found to be true, remove A[i] + A[j] from the set.
- If the set becomes empty, then print “Yes”. Otherwise, print “No”.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include using namespace std; // Function to check if each element // of B[] can be formed by adding two // elements of array A[] string checkPossible(int A[], int B[], int n) { // Store each element of B[] unordered_set values; for (int i = 0; i < n; i++) { values.insert(B[i]); } // Traverse all possible pairs of array for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { // If A[i] + A[j] is present in // the set if (values.find(A[i] + A[j]) != values.end()) { // Remove A[i] + A[j] from the set values.erase(A[i] + A[j]); if (values.empty()) break; } } } // If set is empty if (values.size() == 0) return "Yes"; // Otherwise else return "No"; } // Driver Code int main() { int N = 5; int A[] = { 3, 5, 1, 4, 2 }; int B[] = { 3, 4, 5, 6, 7 }; cout << checkPossible(A, B, N); } |
Java
// Java program to implement // the above approach import java.io.*;import java.util.*; class GFG{ // Function to check if each element // of B[] can be formed by adding two // elements of array A[] static String checkPossible(int A[], int B[], int n) { // Store each element of B[] Set values = new HashSet(); for(int i = 0; i < n; i++) { values.add(B[i]); } // Traverse all possible pairs of array for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { // If A[i] + A[j] is present in // the set if (values.contains(A[i] + A[j])) { // Remove A[i] + A[j] from the set values.remove(A[i] + A[j]); if (values.size() == 0) break; } } } // If set is empty if (values.size() == 0) return "Yes"; // Otherwise else return "No"; } // Driver Code public static void main(String args[]){ int N = 5; int A[] = { 3, 5, 1, 4, 2 }; int B[] = { 3, 4, 5, 6, 7 }; System.out.print(checkPossible(A, B, N)); } } // This code is contributed by offbeat |
Python3
# Python3 program to implement # the above approach # Function to check if each element # of B[] can be formed by adding two # elements of array A[] def checkPossible(A, B, n): # Store each element of B[] values = set([]) for i in range (n): values.add(B[i]) # Traverse all possible # pairs of array for i in range (n): for j in range (n): # If A[i] + A[j] is present in # the set if ((A[i] + A[j]) in values): # Remove A[i] + A[j] from the set values.remove(A[i] + A[j]) if (len(values) == 0): break # If set is empty if (len(values) == 0): return "Yes" # Otherwise else: return "No"# Driver Code if __name__ == "__main__": N = 5 A = [3, 5, 1, 4, 2] B = [3, 4, 5, 6, 7] print (checkPossible(A, B, N))# This code is contributed by Chitranayal |
C#
// C# program to implement // the above approach using System;using System.Collections.Generic;class GFG{ // Function to check if each element // of []B can be formed by adding two // elements of array []A static String checkPossible(int []A, int []B, int n) { // Store each element of []B HashSet values = new HashSet(); for(int i = 0; i < n; i++) { values.Add(B[i]); } // Traverse all possible pairs of array for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { // If A[i] + A[j] is present in // the set if (values.Contains(A[i] + A[j])) { // Remove A[i] + A[j] from the set values.Remove(A[i] + A[j]); if (values.Count == 0) break; } } } // If set is empty if (values.Count == 0) return "Yes"; // Otherwise else return "No"; } // Driver Code public static void Main(String []args){ int N = 5; int []A = {3, 5, 1, 4, 2}; int []B = {3, 4, 5, 6, 7}; Console.Write(checkPossible(A, B, N)); } } // This code is contributed by Amit Katiyar |
Javascript
<script>// Javascript program to implement // the above approach // Function to check if each element // of B[] can be formed by adding two // elements of array A[] function checkPossible(A, B, n) { // Store each element of B[] var values = new Set(); for(var i = 0; i < n; i++) { values.add(B[i]); } // Traverse all possible pairs of array for(var i = 0; i < n; i++) { for(var j = 0; j < n; j++) { // If A[i] + A[j] is present in // the set if (values.has(A[i] + A[j])) { // Remove A[i] + A[j] from the set values.delete(A[i] + A[j]); if (values.size == 0) break; } } } // If set is empty if (values.size == 0) return "Yes"; // Otherwise else return "No"; } // Driver Code var N = 5; var A = [ 3, 5, 1, 4, 2 ]; var B = [ 3, 4, 5, 6, 7 ]; document.write(checkPossible(A, B, N)); // This code is contributed by itsok</script> |
Output:
Yes
Time Complexity: O(N2)
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



