Find the number of p-sided squares in a grid with K blacks painted

Given a grid of size H*W with all cells initially white. Given N pairs (i, j) in an array, for each pair, paint cell (i, j) with black colour. The task is to determine how many squares of size p×p of the grid contains exactly K black cells, after N cells being painted.
Examples:
Input: H = 4, W = 5,
N = 8, K = 4, p = 3
arr=[ (3, 1), (3, 2), (3, 4), (4, 4),
(1, 5), (2, 3), (1, 1), (1, 4) ]
Output: 4
Cells that are being painted are shown in the figure below:
Here p = 3.
There are six subrectangles of size 3*3.
Two of them contain three black cells each,
and the remaining four contain four black cells each.
Input: H = 1, W = 1,
N = 1, K = 1, p = 1
arr=[ (1, 1) ]
Output: 1
Approach:
- First thing to observe is that one p*p sub-grid will be different from the other if their starting points are different.
- Second thing is that if the cell is painted black, it will contribute to p^2 different p*p sub-grids.
- For example, suppose cell [i, j] is painted black. Then it will contribute additional +1 to all the subgrids having starting point
[i-p+1][j-p+1] to [i, j]. - Since there can be at most N blacks, for each black cell do p*p iterations and update its contribution for each p*p sub-grids.
- Keep a map to keep track of answer for each cell of the grid.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach#include <bits/stdc++.h>using namespace std;// Function to check if a cell is safe or notbool isSafe(int x, int y, int h, int w, int p){ if (x >= 1 and x <= h) { if (y >= 1 and y <= w) { if (x + p - 1 <= h) { if (y + p - 1 <= w) { return true; } } } } return false;}// Function to print the number of p-sided squares // having k blacksvoid CountSquares(int h, int w, int n, int k, int p, vector<pair<int, int> > painted){ // Map to keep track for each cell that is // being affected by other blacks map<pair<int, int>, int> mp; for (int i = 0; i < painted.size(); ++i) { int x = painted[i].first; int y = painted[i].second; // For a particular row x and column y, // it will affect all the cells starting // from row = x-p+1 and column = y-p+1 // and ending at x, y // hence there will be total // of p^2 different cells for (int j = x - p + 1; j <= x; ++j) { for (int k = y - p + 1; k <= y; ++k) { // If the cell is safe if (isSafe(j, k, h, w, p)) { pair<int, int> temp = { j, k }; // No need to increase the value // as there is no sense of paint // 2 blacks in one cell if (mp[temp] >= p * p) continue; else mp[temp]++; } } } } // Answer array to store the answer. int ans[p * p + 1]; memset(ans, 0, sizeof ans); for (auto& x : mp) { int cnt = x.second; ans[cnt]++; } // sum variable to store sum for all the p*p sub // grids painted with 1 black, 2 black, // 3 black, ..., p^2 blacks, // Since there is no meaning in painting p*p sub // grid with p^2+1 or more blacks int sum = 0; for (int i = 1; i <= p * p; ++i) sum = sum + ans[i]; // There will be total of // (h-p+1) * (w-p+1), p*p sub grids int total = (h - p + 1) * (w - p + 1); ans[0] = total - sum; cout << ans[k] << endl; return;}// Driver codeint main(){ int H = 4, W = 5, N = 8, K = 4, P = 3; vector<pair<int, int> > painted; // Initializing matrix painted.push_back({ 3, 1 }); painted.push_back({ 3, 2 }); painted.push_back({ 3, 4 }); painted.push_back({ 4, 4 }); painted.push_back({ 1, 5 }); painted.push_back({ 2, 3 }); painted.push_back({ 1, 1 }); painted.push_back({ 1, 4 }); CountSquares(H, W, N, K, P, painted); return 0;} |
Java
// Java implementation of the above approach import java.util.*;import java.awt.Point;class GFG{ // Function to check if a cell is safe or not static boolean isSafe(int x, int y, int h, int w, int p) { if (x >= 1 && x <= h) { if (y >= 1 && y <= w) { if (x + p - 1 <= h) { if (y + p - 1 <= w) { return true; } } } } return false; } // Function to print the number of p-sided squares // having k blacks static void CountSquares(int h, int w, int n, int K, int p, List<Point> painted) { // Map to keep track for each cell that is // being affected by other blacks HashMap<Point, Integer> mp = new HashMap<>(); for(int i = 0; i < painted.size(); ++i) { int x = painted.get(i).x; int y = painted.get(i).y; // For a particular row x and column y, // it will affect all the cells starting // from row = x-p+1 and column = y-p+1 // and ending at x, y // hence there will be total // of p^2 different cells for(int j = x - p + 1; j <= x; ++j) { for(int k = y - p + 1; k <= y; ++k) { // If the cell is safe if (isSafe(j, k, h, w, p)) { Point temp = new Point(j, k); // No need to increase the value // as there is no sense of paint // 2 blacks in one cell if (mp.containsKey(temp)) { if (mp.get(temp) >= p * p) continue; else mp.put(temp, mp.get(temp) + 1); } else { mp.put(temp, 1); } } } } } // Answer array to store the answer. int[] ans = new int[p * p + 1]; for (Map.Entry<Point, Integer> x : mp.entrySet()) { int cnt = x.getValue(); ans[cnt]++; } // sum variable to store sum for all the p*p sub // grids painted with 1 black, 2 black, // 3 black, ..., p^2 blacks, // Since there is no meaning in painting p*p sub // grid with p^2+1 or more blacks int sum = 0; for(int i = 1; i <= p * p; ++i) sum = sum + ans[i]; // There will be total of // (h-p+1) * (w-p+1), p*p sub grids int total = (h - p + 1) * (w - p + 1); ans[0] = total - sum; System.out.println(ans[K]); return; } // Driver code public static void main(String[] args) { int H = 4, W = 5, N = 8, K = 4, P = 3; List<Point> painted = new ArrayList<Point>(); // Initializing matrix painted.add(new Point(3, 1)); painted.add(new Point(3, 2)); painted.add(new Point(3, 4)); painted.add(new Point(4, 4)); painted.add(new Point(1, 5)); painted.add(new Point(2, 3)); painted.add(new Point(1, 1)); painted.add(new Point(1, 4)); CountSquares(H, W, N, K, P, painted); }}// This code is contributed by divyesh072019 |
Python3
# Python3 implementation of the above approach# Function to check if a cell is safe or notdef isSafe(x, y, h, w, p): if (x >= 1 and x <= h): if (y >= 1 and y <= w): if (x + p - 1 <= h): if (y + p - 1 <= w): return True return False# Function to print the number of p-sided squares# having k blacksdef CountSquares(h, w, n, k, p, painted): # Map to keep track for each cell that is # being affected by other blacks mp = dict() for i in range(len(painted)): x = painted[i][0] y = painted[i][1] # For a particular row x and column y, # it will affect all the cells starting # from row = x-p+1 and column = y-p+1 # and ending at x, y # hence there will be total # of p^2 different cells for j in range(x - p + 1, x + 1): for k in range(y - p + 1, y + 1): # If the cell is safe if (isSafe(j, k, h, w, p)): temp = (j, k) # No need to increase the value # as there is no sense of pa # 2 blacks in one cell if (temp in mp.keys() and mp[temp] >= p * p): continue else: mp[temp] = mp.get(temp, 0) + 1 # Answer array to store the answer. ans = [0 for i in range(p * p + 1)] # memset(ans, 0, sizeof ans) for x in mp: cnt = mp[x] ans[cnt] += 1 # Sum variable to store Sum for all the p*p sub # grids painted with 1 black, 2 black, # 3 black, ..., p^2 blacks, # Since there is no meaning in painting p*p sub # grid with p^2+1 or more blacks Sum = 0 for i in range(1, p * p + 1): Sum = Sum + ans[i] # There will be total of # (h-p+1) * (w-p+1), p*p sub grids total = (h - p + 1) * (w - p + 1) ans[0] = total - Sum print(ans[k]) return# Driver codeH = 4W = 5N = 8K = 4P = 3painted = []# Initializing matrixpainted.append([ 3, 1 ])painted.append([ 3, 2 ])painted.append([ 3, 4 ])painted.append([ 4, 4 ])painted.append([ 1, 5 ])painted.append([ 2, 3 ])painted.append([ 1, 1 ])painted.append([ 1, 4 ])CountSquares(H, W, N, K, P, painted) # This code is contributed by Mohit Kumar |
C#
// C# implementation of the above approach using System;using System.Collections.Generic;class GFG{ // Function to check if a cell is safe or not static bool isSafe(int x, int y, int h, int w, int p) { if (x >= 1 && x <= h) { if (y >= 1 && y <= w) { if (x + p - 1 <= h) { if (y + p - 1 <= w) { return true; } } } } return false; } // Function to print the number of p-sided squares // having k blacks static void CountSquares(int h, int w, int n, int K, int p, List<Tuple<int, int>> painted) { // Map to keep track for each cell that is // being affected by other blacks Dictionary<Tuple<int, int>, int> mp = new Dictionary<Tuple<int, int>, int>(); for(int i = 0; i < painted.Count; ++i) { int x = painted[i].Item1; int y = painted[i].Item2; // For a particular row x and column y, // it will affect all the cells starting // from row = x-p+1 and column = y-p+1 // and ending at x, y // hence there will be total // of p^2 different cells for(int j = x - p + 1; j <= x; ++j) { for(int k = y - p + 1; k <= y; ++k) { // If the cell is safe if (isSafe(j, k, h, w, p)) { Tuple<int, int> temp = new Tuple<int, int>(j, k); // No need to increase the value // as there is no sense of paint // 2 blacks in one cell if (mp.ContainsKey(temp)) { if (mp[temp] >= p * p) continue; else mp[temp]++; } else { mp[temp] = 1; } } } } } // Answer array to store the answer. int[] ans = new int[p * p + 1]; foreach(KeyValuePair<Tuple<int, int>, int> x in mp) { int cnt = x.Value; ans[cnt]++; } // sum variable to store sum for all the p*p sub // grids painted with 1 black, 2 black, // 3 black, ..., p^2 blacks, // Since there is no meaning in painting p*p sub // grid with p^2+1 or more blacks int sum = 0; for(int i = 1; i <= p * p; ++i) sum = sum + ans[i]; // There will be total of // (h-p+1) * (w-p+1), p*p sub grids int total = (h - p + 1) * (w - p + 1); ans[0] = total - sum; Console.WriteLine(ans[K]); return; } // Driver Codestatic void Main() { int H = 4, W = 5, N = 8, K = 4, P = 3; List<Tuple<int, int>> painted = new List<Tuple<int, int>>(); // Initializing matrix painted.Add(new Tuple<int, int>(3, 1)); painted.Add(new Tuple<int, int>(3, 2)); painted.Add(new Tuple<int, int>(3, 4)); painted.Add(new Tuple<int, int>(4, 4)); painted.Add(new Tuple<int, int>(1, 5)); painted.Add(new Tuple<int, int>(2, 3)); painted.Add(new Tuple<int, int>(1, 1)); painted.Add(new Tuple<int, int>(1, 4)); CountSquares(H, W, N, K, P, painted); }}// This code is contributed by divyeshrabadiya07 |
Javascript
<script>// JavaScript implementation of the above approach// Function to check if a cell is safe or notfunction isSafe(x,y,h,w,p){ if (x >= 1 && x <= h) { if (y >= 1 && y <= w) { if (x + p - 1 <= h) { if (y + p - 1 <= w) { return true; } } } } return false;}// Function to print the number of p-sided squares // having k blacksfunction CountSquares(h,w,n,K,p,painted){ // Map to keep track for each cell that is // being affected by other blacks let mp = new Map(); for(let i = 0; i < painted.length; ++i) { let x = painted[i][0]; let y = painted[i][1]; // For a particular row x and column y, // it will affect all the cells starting // from row = x-p+1 and column = y-p+1 // and ending at x, y // hence there will be total // of p^2 different cells for(let j = x - p + 1; j <= x; ++j) { for(let k = y - p + 1; k <= y; ++k) { // If the cell is safe if (isSafe(j, k, h, w, p)) { let temp = [j, k].toString(); // No need to increase the value // as there is no sense of paint // 2 blacks in one cell if (mp.has(temp)) { if (mp.get(temp) >= p * p) continue; else mp.set(temp, mp.get(temp) + 1); } else { mp.set(temp, 1); } } } } } // Answer array to store the answer. let ans = new Array(p * p + 1); for(let i=0;i<ans.length;i++) { ans[i]=0; } for (let [key, value] of mp.entries()) { let cnt = value; ans[cnt]++; } // sum variable to store sum for all the p*p sub // grids painted with 1 black, 2 black, // 3 black, ..., p^2 blacks, // Since there is no meaning in painting p*p sub // grid with p^2+1 or more blacks let sum = 0; for(let i = 1; i <= p * p; ++i) sum = sum + ans[i]; // There will be total of // (h-p+1) * (w-p+1), p*p sub grids let total = (h - p + 1) * (w - p + 1); ans[0] = total - sum; document.write(ans[K]+"<br>"); return;} // Driver codelet H = 4, W = 5, N = 8, K = 4, P = 3;let painted = [] // Initializing matrixpainted.push([ 3, 1 ])painted.push([ 3, 2 ])painted.push([ 3, 4 ])painted.push([ 4, 4 ])painted.push([ 1, 5 ])painted.push([ 2, 3 ])painted.push([ 1, 1 ])painted.push([ 1, 4 ]) CountSquares(H, W, N, K, P, painted)// This code is contributed by unknown2108</script> |
Output:
4
Time Complexity : O(N*p*p)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!




