Maximum difference between groups of size two

Given an array of even number of elements, form groups of 2 using these array elements such that the difference between the group with highest sum and the one with lowest sum is maximum.
Note: An element can be a part of one group only and it has to be a part of at least 1 group.
Examples:
Input : arr[] = {1, 4, 9, 6}
Output : 10
Groups formed will be (1, 4) and (6, 9),
the difference between highest sum group
(6, 9) i.e 15 and lowest sum group (1, 4)
i.e 5 is 10.
Input : arr[] = {6, 7, 1, 11}
Output : 11
Groups formed will be (1, 6) and (7, 11),
the difference between highest sum group
(7, 11) i.e 18 and lowest sum group (1, 6)
i.e 7 is 11.
Simple Approach: We can solve this problem by making all possible combinations and checking each set of combination differences between the group with the highest sum and with the lowest sum. A total of n*(n-1)/2 such groups would be formed (nC2).
Time Complexity: O(n^3), because it will take O(n^2) to generate groups and to check against each group n iterations will be needed thus overall it takes O(n^3) time.
Efficient Approach: We can use the greedy approach. Sort the whole array and our result is sum of last two elements minus sum of first two elements.
Implementation:
C++
// CPP program to find minimum difference// between groups of highest and lowest// sums.#include <bits/stdc++.h>#define ll long long intusing namespace std;ll CalculateMax(ll arr[], int n){ // Sorting the whole array. sort(arr, arr + n); int min_sum = arr[0] + arr[1]; int max_sum = arr[n-1] + arr[n-2]; return abs(max_sum - min_sum);}// Driver codeint main(){ ll arr[] = { 6, 7, 1, 11 }; int n = sizeof(arr) / sizeof(arr[0]); cout << CalculateMax(arr, n) << endl; return 0;} |
Java
// Java program to find minimum difference // between groups of highest and lowest // sums. import java.util.Arrays; import java.io.*;class GFG {static int CalculateMax(int arr[], int n) { // Sorting the whole array. Arrays.sort(arr); int min_sum = arr[0] + arr[1]; int max_sum = arr[n-1] + arr[n-2]; return (Math.abs(max_sum - min_sum)); } // Driver code public static void main (String[] args) { int arr[] = { 6, 7, 1, 11 }; int n = arr.length; System.out.println (CalculateMax(arr, n)); }} |
Python3
# Python 3 program to find minimum difference # between groups of highest and lowest def CalculateMax(arr, n): # Sorting the whole array. arr.sort() min_sum = arr[0] + arr[1] max_sum = arr[n - 1] + arr[n - 2] return abs(max_sum - min_sum)# Driver codearr = [6, 7, 1, 11]n = len(arr)print(CalculateMax(arr, n))# This code is contributed# by Shrikant13 |
C#
// C# program to find minimum difference // between groups of highest and lowest // sums.using System;public class GFG{static int CalculateMax(int []arr, int n) { // Sorting the whole array. Array.Sort(arr); int min_sum = arr[0] + arr[1]; int max_sum = arr[n-1] + arr[n-2]; return (Math.Abs(max_sum - min_sum)); } // Driver code static public void Main (){ int []arr = { 6, 7, 1, 11 }; int n = arr.Length; Console.WriteLine(CalculateMax(arr, n)); }//This code is contributed by Sachin. } |
PHP
<?php// PHP program to find minimum // difference between groups of // highest and lowest sums.function CalculateMax($arr, $n){ // Sorting the whole array. sort($arr); $min_sum = $arr[0] + $arr[1]; $max_sum = $arr[$n - 1] + $arr[$n - 2]; return abs($max_sum - $min_sum);}// Driver code$arr = array (6, 7, 1, 11 );$n = sizeof($arr);echo CalculateMax($arr, $n), "\n" ;// This code is contributed by ajit?> |
Javascript
<script> // Javascript program to // find minimum difference // between groups of highest and lowest // sums. function CalculateMax(arr, n) { // Sorting the whole array. arr.sort(function(a, b){return a - b}); let min_sum = arr[0] + arr[1]; let max_sum = arr[n-1] + arr[n-2]; return (Math.abs(max_sum - min_sum)); } let arr = [ 6, 7, 1, 11 ]; let n = arr.length; document.write(CalculateMax(arr, n)); </script> |
11
Time Complexity: O (n * log n)
Auxiliary Space: O(1)
Further Optimization : Instead of sorting, we can find a maximum two and minimum of two in linear time and reduce the time complexity to O(n).
Implementation:
C++
// CPP program to find minimum difference// between groups of highest and lowest// sums.#include <bits/stdc++.h>using namespace std;int CalculateMax(int arr[], int n){ int first_min = INT_MAX; int second_min = INT_MAX; for(int i = 0; i < n ; i ++) { /* If current element is smaller than first then update both first and second */ if (arr[i] < first_min) { second_min = first_min; first_min = arr[i]; } /* If arr[i] is in between first and second then update second */ else if (arr[i] < second_min && arr[i] != first_min) second_min = arr[i]; } int first_max = INT_MIN; int second_max = INT_MIN; for (int i = 0; i < n ; i ++) { /* If current element is smaller than first then update both first and second */ if (arr[i] > first_max) { second_max = first_max; first_max = arr[i]; } /* If arr[i] is in between first and second then update second */ else if (arr[i] > second_max && arr[i] != first_max) second_max = arr[i]; } return abs(first_max+second_max-first_min-second_min); }// Driver codeint main(){ int arr[] = { 6, 7, 1, 11 }; int n = sizeof(arr) / sizeof(arr[0]); cout << CalculateMax(arr, n) << endl; return 0;}// This code is contributed by Pushpesh Raj |
Java
// Java program to find minimum difference// between groups of highest and lowest// sums.import java.util.Arrays;import java.io.*;class GFG {static int CalculateMax(int arr[], int n){ int first_min = Integer.MAX_VALUE; int second_min = Integer.MAX_VALUE; for(int i = 0; i < n ; i ++) { /* If current element is smaller than first then update both first and second */ if (arr[i] < first_min) { second_min = first_min; first_min = arr[i]; } /* If arr[i] is in between first and second then update second */ else if (arr[i] < second_min && arr[i] != first_min) second_min = arr[i]; } int first_max = Integer.MIN_VALUE; int second_max = Integer.MIN_VALUE; for (int i = 0; i < n ; i ++) { /* If current element is smaller than first then update both first and second */ if (arr[i] > first_max) { second_max = first_max; first_max = arr[i]; } /* If arr[i] is in between first and second then update second */ else if (arr[i] > second_max && arr[i] != first_max) second_max = arr[i]; } return Math.abs(first_max+second_max-first_min-second_min);}// Driver code public static void main (String[] args) { int arr[] = { 6, 7, 1, 11 }; int n = arr.length; System.out.println (CalculateMax(arr, n)); }} |
Python3
# Python 3 program to find minimum difference# between groups of highest and lowestdef CalculateMax(arr, n): # maxint constant first_min = 99999 second_min = 99999 for i in range(n): if arr[i] < first_min: second_min = first_min first_min = arr[i] # If arr[i] is in between first and second # then update second elif arr[i] < second_min & arr[i] != first_min: second_min = arr[i] # maxint constant first_max = -99999 second_max = -99999 for i in range(n): if arr[i] > first_max: second_max = first_max first_max = arr[i] # If arr[i] is in between first and second # then update second elif arr[i] > second_max & arr[i] != first_max: second_max = arr[i] return abs(first_max+second_max-first_min-second_min)# Driver codearr = [6, 7, 1, 11]n = len(arr)print(CalculateMax(arr, n))# This code is contributed Aarti_Rathi |
C#
// C# program to find minimum difference// between groups of highest and lowest// sums.using System;public class GFG{static int CalculateMax(int []arr, int n){ int first_min = int.MaxValue; int second_min = int.MaxValue; for(int i = 0; i < n ; i ++) { /* If current element is smaller than first then update both first and second */ if (arr[i] < first_min) { second_min = first_min; first_min = arr[i]; } /* If arr[i] is in between first and second then update second */ else if (arr[i] < second_min && arr[i] != first_min) second_min = arr[i]; } int first_max = int.MinValue; int second_max = int.MinValue; for (int i = 0; i < n ; i ++) { /* If current element is smaller than first then update both first and second */ if (arr[i] > first_max) { second_max = first_max; first_max = arr[i]; } /* If arr[i] is in between first and second then update second */ else if (arr[i] > second_max && arr[i] != first_max) second_max = arr[i]; } return Math.Abs(first_max+second_max-first_min-second_min);}// Driver code static public void Main (){ int []arr = { 6, 7, 1, 11 }; int n = arr.Length; Console.WriteLine(CalculateMax(arr, n)); }} |
Javascript
<script> // Javascript program to // find minimum difference // between groups of highest and lowest // sums. function CalculateMax(arr, n) { let first_min = Number.MAX_VALUE; let second_min = Number.MAX_VALUE; for(let i = 0; i < n ; i ++) { /* If current element is smaller than first then update both first and second */ if (arr[i] < first_min) { second_min = first_min; first_min = arr[i]; } /* If arr[i] is in between first and second then update second */ else if (arr[i] < second_min && arr[i] != first_min) second_min = arr[i]; } let first_max = Number.MIN_VALUE; let second_max = Number.MIN_VALUE; for (let i = 0; i < n ; i ++) { /* If current element is smaller than first then update both first and second */ if (arr[i] > first_max) { second_max = first_max; first_max = arr[i]; } /* If arr[i] is in between first and second then update second */ else if (arr[i] > second_max && arr[i] != first_max) second_max = arr[i]; } return Math.abs(first_max+second_max-first_min-second_min); } let arr = [ 6, 7, 1, 11 ]; let n = arr.length; document.write(CalculateMax(arr, n)); </script> |
11
Complexity Analysis:
- Time Complexity: O(N)
- Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



