Number of subarrays such that XOR of one half is equal to the other

Given an array of N numbers, the task is to find the number of sub-arrays (size of the sub-array should be an even number) of the given array such that after dividing the sub-array in two equal halves, bitwise XOR of one half of the sub-array will be equal to bitwise XOR of the other half.
Examples:Â Â
Input : N = 6, arr[] = {3, 2, 2, 3, 7, 6}
Output : 3
Valid sub-arrays are {3, 2, 2, 3}, {2, 2},
and {2, 3, 7, 6}
Input : N = 5, arr[] = {1, 2, 3, 4, 5}
Output : 1
Input : N = 3, arr[] = {42, 4, 2}
Output : 0
Approach: If an array is divided into two equal halves and XOR of one half is equal to the other, it means that XOR of whole of the array should be 0, because A^A = 0. Now, to solve the above problem find the prefix XOR’s of all the elements of the given array starting from left.Â
Suppose, a sub-array starts from l and ends at r, then (r-l+1) should be even. Also, to find XOR of a given range (l, r) subtract prefix XOR at (l – 1) with prefix XOR at r.Â
Since, (r – l + 1) is even, hence, if r is even then l should be odd and vice versa. Now, divide your prefixes into two groups, one should be the group of prefixes of odd indexes and the other should be of even indexes. Now, start traversing the prefix array from left to right and see how many time this particular prefix A has already occurred in its respective group, i.e. prefixes at even indexes should be checked in even prefix group and prefixes at odd indexes in odd prefix group (because if r is even then (l-1) is also even, similar logic is applied if r is odd).
Below is the implementation of the above approach:Â Â
C++
// C++ program to find number of subarrays such that// XOR of one half is equal to the otherÂ
#include <bits/stdc++.h>using namespace std;Â
// Function to find number of subarrays such that// XOR of one half is equal to the otherint findSubarrCnt(int arr[], int n){    // Variables to store answer and current XOR's    int ans = 0, XOR = 0;Â
    // Array to store prefix XOR's    int prefix[n];Â
    for (int i = 0; i < n; ++i) {Â
        // Calculate XOR until this index        XOR = XOR ^ arr[i];Â
        // Store the XOR in prefix array        prefix[i] = XOR;    }Â
    // Create groups for odd indexes and even indexes    unordered_map<int, int> oddGroup, evenGroup;Â
    // Initialize occurrence of 0 in oddGroup as 1    // because it will be used in case our    // subarray has l = 0    oddGroup[0] = 1;Â
    for (int i = 0; i < n; ++i) {Â
        if (i & 1) {Â
            // Check the frequency of current prefix             // XOR in oddGroup and add it to the             // answer            ans += oddGroup[prefix[i]];Â
            // Update the frequency            ++oddGroup[prefix[i]];        }        else {Â
            // Check the frequency of current prefix             // XOR in evenGroup and add it to the            // answer            ans += evenGroup[prefix[i]];Â
            // Update the frequency            ++evenGroup[prefix[i]];        }    }Â
    return ans;}Â
// Driver Codeint main(){Â Â Â Â int N = 6;Â
    int arr[] = { 3, 2, 2, 3, 7, 6 };Â
    cout << findSubarrCnt(arr, N);Â
    return 0;} |
Java
// JAVA program to find number of subarrays such that// XOR of one half is equal to the otherimport java.util.*;Â
class GFG{             // Function to find number of subarrays such that    // XOR of one half is equal to the other    static int findSubarrCnt(int arr[], int n)    {        // Variables to store answer and current XOR's        int ans = 0, XOR = 0;             // Array to store prefix XOR's        int prefix[] = new int[n];             for (int i = 0; i < n; ++i)         {                 // Calculate XOR until this index            XOR = XOR ^ arr[i];                 // Store the XOR in prefix array            prefix[i] = XOR;        }             // Create groups for odd indexes and even indexes        HashMap<Integer, Integer> evenGroup = new HashMap<>();        HashMap<Integer, Integer> oddGroup = new HashMap<>();         Â
        // Initialize occurrence of 0 in oddGroup as 1        // because it will be used in case our        // subarray has l = 0        oddGroup.put(0, 1);             for (int i = 0; i < n; ++i)         {                 if (i % 2== 1)             {                     // Check the frequency of current prefix                 // XOR in oddGroup and add it to the                 // answer                if(oddGroup.containsKey(prefix[i]))                {                    ans += oddGroup.get(prefix[i]);                         // Update the frequency                    oddGroup.put(prefix[i],oddGroup.get(prefix[i] + 1));                }                else                {                    oddGroup.put(prefix[i], 1);                }                             }            else            {                     // Check the frequency of current prefix                 // XOR in evenGroup and add it to the                // answer                if(evenGroup.containsKey(prefix[i]))                {                    ans += evenGroup.get(prefix[i]);                         // Update the frequency                    evenGroup.put(prefix[i],evenGroup.get(prefix[i] + 1));                }                else                {                    evenGroup.put(prefix[i], 1);                }            }        }             return ans;    }         // Driver Code    public static void main (String[] args)     {             int arr[] = { 3, 2, 2, 3, 7, 6 };        int N = arr.length;             System.out.println(findSubarrCnt(arr, N));    }}Â
// This code is contributed by ihritik |
Python3
# Python3 program to find number of subarrays # such that XOR of one half is equal to the other Â
# Function to find number of subarrays # such that XOR of one half is equal # to the other def findSubarrCnt(arr, n) :         # Variables to store answer    # and current XOR's     ans = 0; XOR = 0; Â
    # Array to store prefix XOR's     prefix = [0] * n; Â
    for i in range(n) : Â
        # Calculate XOR until this index         XOR = XOR ^ arr[i]; Â
        # Store the XOR in prefix array         prefix[i] = XOR;          # Create groups for odd indexes and     # even indexes     oddGroup = dict.fromkeys(prefix, 0)     evenGroup = dict.fromkeys(prefix, 0)Â
    # Initialize occurrence of 0 in oddGroup     # as 1 because it will be used in case     # our subarray has l = 0     oddGroup[0] = 1; Â
    for i in range(n) :Â
        if (i & 1) :Â
            # Check the frequency of current             # prefix XOR in oddGroup and add             # it to the answer             ans += oddGroup[prefix[i]]; Â
            # Update the frequency             oddGroup[prefix[i]] += 1;                  else : Â
            # Check the frequency of current             # prefix XOR in evenGroup and add             # it to the answer             ans += evenGroup[prefix[i]]; Â
            # Update the frequency             evenGroup[prefix[i]] += 1; Â
    return ans; Â
# Driver Code if __name__ == "__main__" : Â
    N = 6; Â
    arr = [ 3, 2, 2, 3, 7, 6 ]; Â
    print(findSubarrCnt(arr, N)); Â
# This code is contributed by Ryuga |
C#
// C# program to find number of subarrays such that// XOR of one half is equal to the otherusing System;using System.Collections.Generic; Â
class GFG{             // Function to find number of subarrays such that    // XOR of one half is equal to the other    static int findSubarrCnt(int [] arr, int n)    {        // Variables to store answer and current XOR's        int ans = 0, XOR = 0;             // Array to store prefix XOR's        int [] prefix = new int[n];             for (int i = 0; i < n; ++i)         {                 // Calculate XOR until this index            XOR = XOR ^ arr[i];                 // Store the XOR in prefix array            prefix[i] = XOR;        }             // Create groups for odd indexes and even indexes        Dictionary<int, int> evenGroup = new Dictionary<int, int>();        Dictionary<int, int> oddGroup = new Dictionary<int, int>();Â
        // Initialize occurrence of 0 in oddGroup as 1        // because it will be used in case our        // subarray has l = 0        oddGroup[0] = 1;             for (int i = 0; i < n; ++i)        {                 if (i % 2== 1)            {                     // Check the frequency of current prefix                 // XOR in oddGroup and add it to the                 // answer                if(oddGroup.ContainsKey(prefix[i]))                {                    ans += oddGroup[prefix[i]];                         // Update the frequency                    oddGroup[prefix[i]]++;                }                else                {                    oddGroup[prefix[i]] = 1;                }                             }            else            {                     // Check the frequency of current prefix                 // XOR in evenGroup and add it to the                // answer                if(evenGroup.ContainsKey(prefix[i]))                {                    ans += evenGroup[prefix[i]];                         // Update the frequency                    evenGroup[prefix[i]]++;                }                else                {                    evenGroup[prefix[i]] = 1;                }            }        }             return ans;    }         // Driver Code    public static void Main ()     {             int [] arr = { 3, 2, 2, 3, 7, 6 };                 int N = arr.Length;             Console.WriteLine(findSubarrCnt(arr, N));    }}Â
// This code is contributed by ihritik |
Javascript
<script>Â
// Javascript program to find number of subarrays such that// XOR of one half is equal to the other          // Function to find number of subarrays such that    // XOR of one half is equal to the other    function findSubarrCnt(arr, n)    {        // Variables to store answer and current XOR's        let ans = 0, XOR = 0;               // Array to store prefix XOR's        let prefix = Array.from({length: n}, (_, i) => 0);               for (let i = 0; i < n; ++i)         {                   // Calculate XOR until this index            XOR = XOR ^ arr[i];                   // Store the XOR in prefix array            prefix[i] = XOR;        }               // Create groups for odd indexes and even indexes        let evenGroup = new Map();        let oddGroup = new Map();                      // Initialize occurrence of 0 in oddGroup as 1        // because it will be used in case our        // subarray has l = 0        oddGroup.set(0, 1);               for (let i = 0; i < n; ++i)         {                   if (i % 2== 1)             {                       // Check the frequency of current prefix                 // XOR in oddGroup and add it to the                 // answer                if(oddGroup.has(prefix[i]))                {                    ans += oddGroup.get(prefix[i]);                           // Update the frequency                    oddGroup.set(prefix[i],oddGroup.get(prefix[i] + 1));                }                else                {                    oddGroup.set(prefix[i], 1);                }                               }            else            {                       // Check the frequency of current prefix                 // XOR in evenGroup and add it to the                // answer                if(evenGroup.has(prefix[i]))                {                    ans += evenGroup.get(prefix[i]);                           // Update the frequency                    evenGroup.set(prefix[i],evenGroup.get(prefix[i] + 1));                }                else                {                    evenGroup.set(prefix[i], 1);                }            }        }               return ans;    }           // Driver code             let arr = [ 3, 2, 2, 3, 7, 6 ];        let N = arr.length;               document.write(findSubarrCnt(arr, N));                     </script> |
3
Â
Time Complexity: O(N), where N is the size of the given input array.
Auxiliary Space: O(N), where N is the size of the given input array.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



