Number is divisible by 29 or not

Given a large number n, find if the number is divisible by 29.
Examples :
Input : 363927598 Output : No Input : 292929002929 Output : Yes
A quick solution to check if a number is divisible by 29 or not is to add 3 times of last digit to rest number and repeat this process until number comes 2 digit. The given number is divisible by 29 if the obtained two digit number is divisible by 29.
Number is 348,
Three times of last digit + Rest of the number = 8*3 + 34 = 58
Since 58 is divisible by 29, 348 is also divisible by 29.
C++
// CPP program to demonstrate above method// to check divisibility by 29.#include <iostream>using namespace std;// Returns true if n is divisible by 29// else returns false.bool isDivisible(long long int n){ // add the lastdigit*3 to renaming // number until number comes only // 2 digit while (n / 100) { int last_digit = n % 10; n /= 10; n += last_digit * 3; } // return true if number is // divisible by 29 another return (n % 29 == 0);}// Driver Codeint main(){ long long int n = 348; if (isDivisible(n)) cout << "Yes" << endl; else cout << "No" << endl; return 0;} |
Java
// Java program to demonstrate above method// to check divisibility by 29.import java.io.*;class GFG { // Returns true if n is divisible by 29 // else returns false. static boolean isDivisible(long n) { // add the lastdigit*3 to renaming // number until number comes only // 2 digit while (n / 100 > 0) { int last_digit = (int)n % 10; n /= 10; n += last_digit * 3; } // return true if number is // divisible by 29 another return (n % 29 == 0); } // Driver code public static void main(String[] args) { long n = 348; if (isDivisible(n)) System.out.println("Yes"); else System.out.println("No"); }}// This code is contributed by vt_m. |
Python3
# Python3 program to demonstrate above # method to check divisibility by 29.# Returns true if n is divisible # by 29 else returns false.def isDivisible(n): # add the lastdigit*3 to renaming # number until number comes only # 2 digit while (int(n / 100)) : last_digit = int(n % 10) n = int(n / 10) n += last_digit * 3 # return true if number is # divisible by 29 another return (n % 29 == 0)# Driver Coden = 348if(isDivisible(n) != 0): print("Yes")else: print("No")# This code is contributed by Smitha Dinesh Semwal. |
C#
// C# program to demonstrate above method// to check divisibility by 29.using System;class GFG { // Returns true if n is divisible by 29 // else returns false. static bool isDivisible(long n) { // add the lastdigit*3 to renaming // number until number comes only // 2 digit while (n / 100 > 0) { int last_digit = (int)n % 10; n /= 10; n += last_digit * 3; } // return true if number is // divisible by 29 another return (n % 29 == 0); } // Driver code public static void Main() { long n = 348; if (isDivisible(n)) Console.Write("Yes"); else Console.Write("No"); }}// This code is contributed by nitin mittal |
PHP
<?php// PHP program to demonstrate // above method to check // divisibility by 29.// Returns true if n is // divisible by 29// else returns false.function isDivisible($n){ // add the lastdigit*3 to // remaining number until // number becomes of only // 2 digit while (intval($n / 100)) { $last_digit = $n % 10; $n = intval($n / 10); $n += $last_digit * 3; } // return true if number is // divisible by 29 another return ($n % 29 == 0);}// Driver Code$n = 348;if (isDivisible($n)) echo "Yes";else echo "No" ;// This code is contributed by Sam007?> |
Javascript
<script>// Javascript program to demonstrate // above method to check // divisibility by 29.// Returns true if n is // divisible by 29// else returns false.function isDivisible(n){ // add the lastdigit*3 to // remaining number until // number becomes of only // 2 digit while (parseInt(n / 100)) { let last_digit = n % 10; n = parseInt(n / 10); n += last_digit * 3; } // return true if number is // divisible by 29 another return (n % 29 == 0);}// Driver Codelet n = 348;if (isDivisible(n)) document.write("Yes");else document.write("No") ;// This code is contributed by _saurabh_jaiswal</script> |
Output :
Yes
Time Complexity: O(n) where n is given number.
Space Complexity: O(1) as we are not using any extra space.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



