Total pairs in an array such that the bitwise AND, bitwise OR and bitwise XOR of LSB is 1

Given an array arr[] of size N. The task is to find the number of pairs (arr[i], arr[j]) as cntAND, cntOR, and cntXOR such that:
- cntAND: Count of pairs where bitwise AND of least significant bits is 1.
- cntOR: Count of pairs where bitwise OR of least significant bits is 1.
- cntXOR: Count of pairs where bitwise XOR of least significant bits is 1.
Examples:
Input: arr[] = {1, 2, 3}
Output:
cntXOR = 2
cntAND = 1
cntOR = 3
Array elements in binary are {01, 10, 11}
Total XOR pairs: 2 i.e., (1, 2) and (2, 3)
Total AND pairs: 1 i.e., (1, 3)
Total OR pairs: 3 i.e., (1, 2), (2, 3) and (1, 3)Input: arr[] = {1, 3, 4, 2}
Output:
cntXOR = 4
cntAND = 1
cntOR = 5
Approach:
- To get the LSB of the elements of the array, first, we calculate the total even and odd elements. Even elements have LSB as 0 and odd elements have LSB as 1.
- In order for
- XOR to be 1, LSB of both the elements have to be different.
- AND to be 1, LSB of both the elements have to be 1.
- OR to be 1, at least one of the elements should have it’s LSB as 1.
- Therefore, total number of required pairs
- For XOR: cntXOR = cntOdd * cntEven
- For AND: cntAND = cntOdd * (cntOdd – 1) / 2
- For OR: cntOR = (cntOdd * cntEven) + cntOdd * (cntOdd – 1) / 2
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to find the count of required pairsvoid CalculatePairs(int a[], int n){ // To store the count of elements which // give remainder 0 i.e. even values int cnt_zero = 0; // To store the count of elements which // give remainder 1 i.e. odd values int cnt_one = 0; for (int i = 0; i < n; i++) { if (a[i] % 2 == 0) cnt_zero += 1; else cnt_one += 1; } long int total_XOR_pairs = cnt_zero * cnt_one; long int total_AND_pairs = (cnt_one) * (cnt_one - 1) / 2; long int total_OR_pairs = cnt_zero * cnt_one + (cnt_one) * (cnt_one - 1) / 2; cout << "cntXOR = " << total_XOR_pairs << endl; cout << "cntAND = " << total_AND_pairs << endl; cout << "cntOR = " << total_OR_pairs << endl;}// Driver codeint main(){ int a[] = { 1, 3, 4, 2 }; int n = sizeof(a) / sizeof(a[0]); CalculatePairs(a, n); return 0;} |
Java
// Java implementation of the approachimport java.io.*;public class GFG { // Function to find the count of required pairs static void CalculatePairs(int a[], int n) { // To store the count of elements which // give remainder 0 i.e. even values int cnt_zero = 0; // To store the count of elements which // give remainder 1 i.e. odd values int cnt_one = 0; for (int i = 0; i < n; i++) { if (a[i] % 2 == 0) cnt_zero += 1; else cnt_one += 1; } int total_XOR_pairs = cnt_zero * cnt_one; int total_AND_pairs = (cnt_one) * (cnt_one - 1) / 2; int total_OR_pairs = cnt_zero * cnt_one + (cnt_one) * (cnt_one - 1) / 2; System.out.println("cntXOR = " + total_XOR_pairs); System.out.println("cntAND = " + total_AND_pairs); System.out.println("cntOR = " + total_OR_pairs); } // Driver code public static void main(String[] args) { int a[] = { 1, 3, 4, 2 }; int n = a.length; CalculatePairs(a, n); }} |
Python3
# Python3 program to find number of pairs# Function to find the count of required pairsdef CalculatePairs(a, n): # To store the count of elements which # give remainder 0 i.e. even values cnt_zero = 0 # To store the count of elements which # give remainder 1 i.e. odd values cnt_one = 0 for i in range(0, n): if (a[i] % 2 == 0): cnt_zero += 1 else: cnt_one += 1 total_XOR_pairs = cnt_zero * cnt_one total_AND_pairs = (cnt_one) * (cnt_one - 1) / 2 total_OR_pairs = cnt_zero * cnt_one + (cnt_one) * (cnt_one - 1) / 2 print("cntXOR = ", int(total_XOR_pairs)) print("cntAND = ", int(total_AND_pairs)) print("cntOR = ", int(total_OR_pairs)) # Driver codeif __name__ == '__main__': a = [1, 3, 4, 2] n = len(a) # Print the count CalculatePairs(a, n) |
C#
// C# implementation of the approachusing System;class GFG { // Function to find the count of required pairs static void CalculatePairs(int[] a, int n) { // To store the count of elements which // give remainder 0 i.e. even values int cnt_zero = 0; // To store the count of elements which // give remainder 1 i.e. odd values int cnt_one = 0; for (int i = 0; i < n; i++) { if (a[i] % 2 == 0) cnt_zero += 1; else cnt_one += 1; } int total_XOR_pairs = cnt_zero * cnt_one; int total_AND_pairs = (cnt_one) * (cnt_one - 1) / 2; int total_OR_pairs = cnt_zero * cnt_one + (cnt_one) * (cnt_one - 1) / 2; Console.WriteLine("cntXOR = " + total_XOR_pairs); Console.WriteLine("cntAND = " + total_AND_pairs); Console.WriteLine("cntOR = " + total_OR_pairs); } // Driver code public static void Main() { int[] a = { 1, 3, 4, 2 }; int n = a.Length; // Print the count CalculatePairs(a, n); }} |
PHP
<?php// PHP implementation of the approach// Function to find the count of required pairsfunction CalculatePairs($a, $n){ // To store the count of elements which // give remainder 0 i.e. even values $cnt_zero = 0; // To store the count of elements which // give remainder 1 i.e. odd values $cnt_one = 0; for ($i = 0; $i < $n; $i++) { if ($a[$i] % 2 == 0) $cnt_zero += 1; else $cnt_one += 1; } $total_XOR_pairs = $cnt_zero * $cnt_one; $total_AND_pairs = ($cnt_one) * ($cnt_one - 1) / 2; $total_OR_pairs = $cnt_zero * $cnt_one+ ($cnt_one) * ($cnt_one - 1) / 2; echo("cntXOR = $total_XOR_pairs\n"); echo("cntAND = $total_AND_pairs\n"); echo("cntOR = $total_OR_pairs\n");}// Driver code$a = array(1, 3, 4, 2);$n = count($a);// Print the countCalculatePairs($a, $n);?> |
Javascript
<script>// JavaScript implementation of the approach // Function to find the count of required pairs function CalculatePairs(a, n) { // To store the count of elements which // give remainder 0 i.e. even values let cnt_zero = 0; // To store the count of elements which // give remainder 1 i.e. odd values let cnt_one = 0; for (let i = 0; i < n; i++) { if (a[i] % 2 == 0) cnt_zero += 1; else cnt_one += 1; } let total_XOR_pairs = cnt_zero * cnt_one; let total_AND_pairs = (cnt_one) * (cnt_one - 1) / 2; let total_OR_pairs = cnt_zero * cnt_one + (cnt_one) * (cnt_one - 1) / 2; document.write("cntXOR = " + total_XOR_pairs + "<br>"); document.write("cntAND = " + total_AND_pairs + "<br>"); document.write("cntOR = " + total_OR_pairs + "<br>"); } // Driver code let a = [ 1, 3, 4, 2 ]; let n = a.length; CalculatePairs(a, n); // This code is contributed by Surbhi Tyagi</script> |
Output
cntXOR = 4 cntAND = 1 cntOR = 5
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



