Print all distinct integers that can be formed by K numbers from a given array of N numbers

Given an array of N elements and an integer K, print all the distinct integers which can be formed by choosing K numbers from the given N numbers. A number from an array can be chosen any number of times.Â
Examples:Â
Input: k = 2, a[] = {3, 8, 17, 5}Â
Output: The 10 distinct integers are:Â
6 8 10 11 13 16 20 22 25 34Â
The 2 elements chosen are:Â
3+3 = 6, 5+3 = 8, 5+5 = 10, 8+3 = 11, 8+5 = 13Â
8+8 = 16, 17+3 = 20, 17+5 = 22, 17+8 = 25, 17+17 = 34.Input: k = 3, a[] = {3, 8, 17}Â
Output: The 10 distinct integers are:Â
9 14 19 23 24 28 33 37 42 51Â
Approach: The problem will be solved using recursion. All combinations are to be tried, when the count of elements selected is equal to k, then we keep the num formed in the set so that the repetitive elements are not counted twice. The function generateNumber(int count, int a[], int n, int num, int k) is a recursive function, in which the base case is when the count becomes K which signifies that K elements from the array have been chosen. num in the parameter signifies the number formed by count number of numbers. In the function, iterate over the array and for every element, call the recursive function with count as count+1 and num as num+a[i].Â
Below is the implementation of the above approach:Â
C++
// C++ program to print all distinct// integers that can be formed by K numbers// from a given array of N numbers.#include <bits/stdc++.h>using namespace std;Â
// stores all the distinct integers formedset<int> s;Â
// Function to generate all possible numbersvoid generateNumber(int count, int a[], int n,                    int num, int k){Â
    // Base case when K elements    // are chosen    if (k == count) {        // insert it in set        s.insert(num);        return;    }Â
    // Choose every element and call the function    for (int i = 0; i < n; i++) {        generateNumber(count + 1, a, n, num + a[i], k);    }}// Function to print the distinct integersvoid printDistinctIntegers(int k, int a[], int n){    generateNumber(0, a, n, 0, k);    cout << "The " << s.size()         << " distinct integers are:\n";Â
    // prints all the elements in the set    while (!s.empty()) {        cout << *s.begin() << " ";Â
        // erase the number after printing it        s.erase(*s.begin());    }}// Driver Codeint main(){    int a[] = { 3, 8, 17, 5 };    int n = sizeof(a) / sizeof(a[0]);    int k = 2;Â
    // Calling Function    printDistinctIntegers(k, a, n);    return 0;} |
Java
// Java program to print all // distinct integers that can // be formed by K numbers from// a given array of N numbers.import java.util.*;import java.lang.*;Â
class GFG{    // stores all the distinct     // integers formed    static TreeSet<Integer> set =                    new TreeSet<Integer>();         // Function to generate     // all possible numbers    public static void generateNumber(int count, int a[],                                       int n, int num, int k)    {        // Base case when K         // elements are chosen        if(count == k)        {            set.add(num);            return;        }                 // Choose every element         // and call the function        for(int i = 0; i < n; i++)        generateNumber(count + 1, a, n,                       num + a[i], k);    }         // Function to print     // the distinct integers    public static void printDistinctIntegers(int k,                                              int a[], int n)    {        generateNumber(0, a, n, 0, k);        System.out.print("The" + " " + set.size() +                          " " + "distinct integers are: ");        System.out.println();        Iterator<Integer> i = set.iterator();                 // prints all the        // elements in the set        while(set.isEmpty() == false)        {                         while(i.hasNext())            {                System.out.print(i.next() + " ");                //set.remove(i.next());            }          }    }         // Driver Code    public static void main (String[] args)     {        int arr[] = {3, 8, 17, 5};        int n = arr.length;        int k = 2;                 // Calling Function        printDistinctIntegers(k, arr, n);    }} |
Python3
# Python3 program to print all distinct # integers that can be formed by K numbers # from a given array of N numbers. Â
# stores all the distinct integers formed s = set()Â
# Function to generate all possible numbers def generateNumber(count, a, n, num, k): Â
    # Base case when K elements are chosen     if k == count:                  # insert it in set         s.add(num)         return         # Choose every element and call the function     for i in range(0, n):         generateNumber(count + 1, a, n,                             num + a[i], k) Â
# Function to print the distinct integers def printDistinctIntegers(k, a, n):Â
    generateNumber(0, a, n, 0, k)     print("The", len(s),           "distinct integers are:") Â
    # prints all the elements in the set     for i in sorted(s):         print(i, end = " ")     # Driver Code if __name__ == "__main__":Â
    a = [3, 8, 17, 5]     n, k = len(a), 2Â
    # Calling Function     printDistinctIntegers(k, a, n)     # This code is contributed by Rituraj Jain |
C#
// C# program to print all // distinct integers that can // be formed by K numbers from// a given array of N numbers.using System;using System.Collections.Generic;Â
class GFG{    // stores all the distinct     // integers formed    static SortedSet<int> set =                 new SortedSet<int>();         // Function to generate     // all possible numbers    public static void generateNumber(int count, int []a,                                     int n, int num, int k)    {        // Base case when K         // elements are chosen        if(count == k)        {            set.Add(num);            return;        }                 // Choose every element         // and call the function        for(int i = 0; i < n; i++)        generateNumber(count + 1, a, n,                    num + a[i], k);    }         // Function to print     // the distinct integers    public static void printDistinctIntegers(int k,                                             int []a, int n)    {        generateNumber(0, a, n, 0, k);        Console.Write("The" + " " + set.Count +                         " " + "distinct integers are: ");        Console.WriteLine();Â
                 // prints all the        // elements in the set        foreach(int sets in set)        {                Console.Write(sets + " ");Â
        }    }         // Driver Code    public static void Main (String[] args)     {        int []arr = {3, 8, 17, 5};        int n = arr.Length;        int k = 2;                 // Calling Function        printDistinctIntegers(k, arr, n);    }}Â
// This code has been contributed by 29AjayKumar |
Javascript
<script>Â
// Javascript program to print all distinct// integers that can be formed by K numbers// from a given array of N numbers.Â
// stores all the distinct integers formedvar s = new Set();Â
// Function to generate all possible numbersfunction generateNumber(count, a, n, num, k){Â
    // Base case when K elements    // are chosen    if (k == count)     {                 // Insert it in set        s.add(num);        return;    }Â
    // Choose every element and call the function    for(var i = 0; i < n; i++)    {        generateNumber(count + 1, a, n,                          num + a[i], k);    }}Â
// Function to print the distinct integersfunction printDistinctIntegers(k, a, n){Â Â Â Â generateNumber(0, a, n, 0, k);Â Â Â Â document.write("The " + s.size + Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â " distinct integers are:<br>");Â
    // prints all the elements in the set    while (s.size != 0)     {        var tmp = [...s].sort((a, b) => a - b)[0]        document.write(tmp + " ");Â
        // Erase the number after printing it        s.delete(tmp);    }}Â
// Driver Codevar a = [ 3, 8, 17, 5 ];var n = a.length;var k = 2;Â
// Calling FunctionprintDistinctIntegers(k, a, n);Â
// This code is contributed by itsokÂ
</script> |
The 10 distinct integers are: 6 8 10 11 13 16 20 22 25 34
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



