Find N from the value of N!

Given a number K which represents the factorial of a number N, the task is to find the value of N
Note: K < 1018
Examples: 

Input: K = 120 
Output:
Explanation: 
5! = 1 * 2 * 3 * 4 * 5 = 120
Input: K = 6 
Output:
Explanation: 
3! = 1 * 2 * 3 = 6 

Approach: It is given that the value of N! is less than 1018. On observation, we can see that this is true only for N <= 18. Therefore we can precompute values of factorials from 1 to 18 and store it in a Hash Table or Map. After pre-computation, for every value of N!, the corresponding N is returned in constant time. 
Below is the implementation of the above approach: 
 

C++




// C++ program to find a number such that
// the factorial of that number is given
 
#include "bits/stdc++.h"
#define ll long long int
using namespace std;
 
// Map to precompute and store the
// factorials of the numbers
map<ll, ll> m;
 
// Function to precompute factorial
int precompute()
{
 
    ll fact = 1;
    for (ll i = 1; i <= 18; i++) {
 
        // Calculating the factorial for
        // each i and storing in a map
        fact = fact * i;
        m[fact] = i;
    }
}
 
// Driver code
int main()
{
    // Precomputing the factorials
    precompute();
 
    int K = 120;
    cout << m[K] << endl;
 
    K = 6;
    cout << m[K] << endl;
 
    return 0;
}


Java




// Java program to find a number such that
// the factorial of that number is given
import java.util.*;
 
class GFG{
  
// Map to precompute and store the
// factorials of the numbers
static Map<Integer, Integer> m = new HashMap<Integer, Integer>();
  
// Function to precompute factorial
static void precompute()
{
  
    int fact = 1;
    for (int i = 1; i <= 18; i++) {
  
        // Calculating the factorial for
        // each i and storing in a map
        fact = fact * i;
        m.put(fact, i);
    }
}
  
// Driver code
public static void main(String[] args)
{
    // Precomputing the factorials
    precompute();
  
    int K = 120;
    System.out.print(m.get(K) +"\n");
  
    K = 6;
    System.out.print(m.get(K) +"\n");
  
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to find a number such that
# the factorial of that number is given
 
# Map to precompute and store the
# factorials of the numbers
m = {};
 
# Function to precompute factorial
def precompute() :
 
    fact = 1;
    for i in range(1, 19) :
 
        # Calculating the factorial for
        # each i and storing in a map
        fact = fact * i;
        m[fact] = i;
         
# Driver code
if __name__ == "__main__" :
 
    # Precomputing the factorials
    precompute();
 
    K = 120;
    print(m[K]);
 
    K = 6;
    print(m[K]) ;
 
# This code is contributed by AnkitRai01


C#




// C# program to find a number such that
// the factorial of that number is given
using System;
using System.Collections.Generic;
 
class GFG{
   
// Map to precompute and store the
// factorials of the numbers
static Dictionary<int, int> m = new Dictionary<int, int>();
   
// Function to precompute factorial
static void precompute()
{
   
    int fact = 1;
    for (int i = 1; i <= 18; i++) {
   
        // Calculating the factorial for
        // each i and storing in a map
        fact = fact * i;
        m.Add(fact, i);
    }
}
   
// Driver code
public static void Main(String[] args)
{
    // Precomputing the factorials
    precompute();
   
    int K = 120;
    Console.Write(m[K] +"\n");
   
    K = 6;
    Console.Write(m[K] +"\n"); 
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript implementation of the
// above approach
 
// Map to precompute and store the
// factorials of the numbers
var m = {};
   
// Function to precompute factorial
function precompute()
{
   
    var fact = 1;
    for (var i = 1; i <= 18; i++) {
   
        // Calculating the factorial for
        // each i and storing in a map
        fact = fact * i;
        m[fact] = i;
    }
}
 
// Driver code
precompute();
var K = 120;
document.write(m[K] + "<br>");
 
K = 6;
document.write(m[K]);
 
 
// This code is contributed by Shivanisingh
</script>


Output: 

5
3

 

Time Complexity: O(1)
Auxiliary Space: O(1)

As constant extra space is used.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button