Smallest and Largest sum of two n-digit numbers

Given an integer N ? 1, the task is to find the smallest and the largest sum of two N digit numbers.
Examples:
Input: N = 1
Output:
Largest = 18
Smallest = 0
Largest 1-digit number is 9 and 9 + 9 = 18
Smallest 1-digit number is 0 and 0 + 0 = 0
Input: N = 2
Output:
Largest = 198
Smallest = 20
Approach:
- For largest: The answer will be 2 * (10N – 1) because the series of sum of two n digit numbers will go on like 2 * 9, 2 * 99, 2 * 999, …
- For smallest:
- If N = 1 then the answer will be 0.
- If N > 1 then the answer will be 2 * (10N – 1) because the series of sum of two n digit numbers will go on like 0, 20, 200, 2000, …
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return the smallest sum// of 2 n-digit numbersint smallestSum(int n){ if (n == 1) return 0; return (2 * pow(10, n - 1));}// Function to return the largest sum// of 2 n-digit numbersint largestSum(int n){ return (2 * (pow(10, n) - 1));}// Driver codeint main(){ int n = 4; cout << "Largest = " << largestSum(n) << endl; cout << "Smallest = " << smallestSum(n); return 0;} |
Java
// Java implementation of the approachclass GFG { // Function to return the smallest sum // of 2 n-digit numbers static int smallestSum(int n) { if (n == 1) return 0; return (2 * (int)Math.pow(10, n - 1)); } // Function to return the largest sum // of 2 n-digit numbers static int largestSum(int n) { return (2 * ((int)Math.pow(10, n) - 1)); } // Driver code public static void main(String args[]) { int n = 4; System.out.println("Largest = " + largestSum(n)); System.out.print("Smallest = " + smallestSum(n)); }} |
Python3
# Python3 implementation of the approach# Function to return the smallest sum # of 2 n-digit numbers def smallestSum(n): if (n == 1): return 0 return (2 * pow(10, n - 1))# Function to return the largest sum # of 2 n-digit numbers def largestSum(n): return (2 * (pow(10, n) - 1))# Driver coden = 4print("Largest = ", largestSum(n))print("Smallest = ", smallestSum(n)) |
C#
// C# implementation of the approachusing System;class GFG { // Function to return the smallest sum // of 2 n-digit numbers static int smallestSum(int n) { if (n == 1) return 0; return (2 * (int)Math.Pow(10, n - 1)); } // Function to return the largest sum // of 2 n-digit numbers static int largestSum(int n) { return (2 * ((int)Math.Pow(10, n) - 1)); } // Driver code public static void Main() { int n = 4; Console.WriteLine("Largest = " + largestSum(n)); Console.Write("Smallest = " + smallestSum(n)); }} |
PHP
<?php// PHP implementation of the approach// Function to return the smallest sum // of 2 n-digit numbers function smallestSum($n){ if ($n == 1) return 0; return (2 * pow(10, $n - 1));} // Function to return the largest sum// of 2 n-digit numbersfunction largestSum($n){ return 2 * ( pow(10, $n) - 1 );}// Driver code$n = 4;echo "Largest = " . largestSum($n) . "\n";echo "Smallest = " . smallestSum($n);?> |
Javascript
<script>// Javascript implementation of the approach// Function to return the smallest sum// of 2 n-digit numbersfunction smallestSum(n){ if (n == 1) return 0; return (2 * Math.pow(10, n - 1));}// Function to return the largest sum// of 2 n-digit numbersfunction largestSum(n){ return (2 * (Math.pow(10, n) - 1));}// Driver codevar n = 4;document.write("Largest = " + largestSum(n) + "<br>");document.write("Smallest = " + smallestSum(n));// This code is contributed by noob2000.</script> |
Output:
Largest = 19998 Smallest = 2000
Time Complexity: O(log n)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 zambiatek!



